Cho a va b la hai so tu nhien .biet a chia het 5 du 2 , b chia het 5 du 3 . CMR ab chia 5 du 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab chia hết cho 5 dư 3 thì ab có tận cùng 3 hoặc 8. Tức là b=3 hoặc 8.
Nếu b=3 thì có 63 chia hết cho 9.
Nếu b=8 thì có18 chia hết cho9.
Số ab chia hết cho 9 và chia 5 dư 3 cần tìm là 63 và 18.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a chia 3 dư 1 suy ra a=3k+1 ( k thuộc N*)
b chia 3 dư 2 suy ra b=3m+2( m thuộc N*)
ab=( 3k+1)(3m+2)
=9km+6k+3m+2
=3(3km+3k+m)+2
mà 3(3km+3k+m) chia hết cho 3
suy ra 3(3km + 3k + m ) +2 chia 3 dư 2
Hay ab chia cho 3 dư 2
xin lỗi, nhầm đề