K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2021

ĐKXĐ: \(-\dfrac{3}{2}\le x\le4\)

BPT tương đương:

\(6+2\sqrt{\left(x+2\right)\left(4-x\right)}>2x+3\)

\(\Leftrightarrow2\sqrt{-x^2+2x+8}>2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\4\left(-x^2+2x+8\right)>4x^2-12x+9\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\8x^2-20x-23< 0\end{matrix}\right.\end{matrix}\right.\) 

\(\Rightarrow-\dfrac{3}{2}\le x< \dfrac{5+\sqrt{71}}{4}\)

\(\Leftrightarrow\left(\sqrt[3]{x+1}-1\right)+\left(\sqrt{2x+4}-2\right)< -x\sqrt{2}\)

=>\(\dfrac{x+1-1}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{2x+4-4}{\sqrt{2x+4}+2}+x\sqrt{2}< 0\)

=>x<0

=>-1<x<0

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

NV
28 tháng 2 2021

Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:

\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)

\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)

Ta có:

\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)

\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)

Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)

Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)

8 tháng 5 2021

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)

 

 

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0$

BPT $\Leftrightarrow \sqrt{x+2}(\sqrt{2}-1)\leq \sqrt{x}$

$\Leftrightarrow (3-2\sqrt{2})(x+2)\leq x$

$\Leftrightarrow x(2-2\sqrt{2})\leq 2(2\sqrt{2}-3)$

$\Leftrightarrow x\geq \frac{2(2\sqrt{2}-3)}{2-2\sqrt{2}}=-1+\sqrt{2}$

Vậy BPT có nghiệm $x\geq -1+\sqrt{2}$

b) ĐK: $x\geq 2$ hoặc $x\leq -2$

BPT $\Leftrightarrow (x-5)\sqrt{x^2-4}-(x-5)(x+5)\leq 0$

$\Leftrightarrow (x-5)[\sqrt{x^2-4}-(x+5)]\leq 0$Ta có 2 TH:

TH1: 

\(\left\{\begin{matrix} x-5\geq 0\\ \sqrt{x^2-4}-(x+5)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ \sqrt{x^2-4}\leq x+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ x^2-4\leq x^2+10x+25\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 5\\ 29\leq 10x\end{matrix}\right.\Leftrightarrow x\geq 5\)

TH2: 

\(\left\{\begin{matrix} x-5\leq 0\\ \sqrt{x^2-4}-(x+5)\geq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x\leq 5\\ x^2-4\geq x^2+10x+25 \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ -29\geq 10x\end{matrix}\right.\)

 \(\Leftrightarrow \left\{\begin{matrix} x\leq 5\\ x\leq \frac{-29}{10}\end{matrix}\right.\Leftrightarrow x\leq \frac{-29}{10}\)

Kết hợp đkxđ suy ra $x\geq 5$ hoặc $x\leq \frac{-29}{10}$