Cho tam giác ABC nhọn (AB < AC) có hai đường cao AD và BE cắt nhau tại H. a) Chứng minh tam giác HEA đồng dạng tam giác HDB. b) Kẻ DK vuông góc AC tại K. Chứng minh CD2 = CK.CA c) Gọi N là trung điểm của CK. Trên tia đối của tia AD lấy điểm F sao cho AF = AD. Chứng minh FK vuông góc DN tại S.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy Q là trung điểm DS, AQ // FS
=> HQ // KS (H thuộc AQ, K thuộc FS)
Ta có
HQ // KS (cmt)
Q là trung điểm DS (gt)
=> H là trung điểm DK
Xét △DKC có
H là trung điểm DK (cmt)
N là trung điểmm KC (gt)
=> HN là đường trung bình △DKC
=> HN // DC (tính chất đường trung bình)
Vì AD ⊥ DC (đường cao AD)
=> HN ⊥ AD
Xét △DAN có
c) Lấy điểm Q là trung điểm DS
Vì AF = AD (gt)
=> A là trung điểm FD
Xét △FDS có
A là trung điểm FD (cmt)
Q là trung điểm DS (gt)
=> AQ là đường trung bình △FDS
=> AQ // FS (tính chất đường trung bình)
=> HQ // KS ( H thuộc AQ, K thuộc FS)
Ta có
HQ // KS (cmt)
Q là trung điểm DS (gt)
=> H là trung điểm DK
Xét △DKC có
H là trung điểm DK (cmt)
N là trung điểm KC (gt)
=> HN là đường trung bình △DKC
=> HN // DC ( tính chất đường trung bình)
Vì DC ⊥ AD (đường cao AD)
=> HN ⊥ AD
Ta có DK ⊥ AC (gt)
Mà N thuộc AC
=> DK ⊥ AN
Xét △DAN có
DK là đường cao thứ nhất (DK ⊥ AN)
HN là đường cao thứ hai (HN ⊥ AD)
HN và DK cắt nhau tại H
=> H là trực tâm △DAN
Mà AQ đi qua trực tâm H
=> AQ là đường cao thứ 3
=> AQ ⊥ DN
Vì AQ // FS (cmt)
=> FS ⊥ DN
a, Xét tgABE và tgACF có:
góc AEB = góc CFA = 90o
góc BAC chung
Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)
=> AB/AC = AE/AF (các cặp cạnh tương ứng)
=> AB.AF = AC.AE
a) Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔHEA\(\sim\)ΔHDB(g-g)
giúp mik câu c với