Cho tam giác ABC (CA<CB), trên BC lấy các điểm M và N sao cho BM=MN=NC . Qua điểm m kẻ đường thẳng song song vớ AB cắt AN tại I.
a) Chứng minh: I là trung điểm của AN
b) Qua K là trung điểm của AB kẻ đường thẳng vuông góc với đường phân giác góc ACB cắt đường thẳng AC tại E, đường thẳng BC tại F. Chứng minh AE=BF
a) Xét ΔNAB có
I\(\in\)NI(gt)
M\(\in\)NB(gt)
IM//AB(gt)
Do đó: \(\dfrac{NI}{AI}=\dfrac{NM}{BM}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{NI}{AI}=1\)
\(\Leftrightarrow NI=AI\)
mà A,I,N thẳng hàng(gt)
nên I là trung điểm của AN(Đpcm)
toán 7 làm gì có định lý TA Lét ??