giúp mình câu 3 và 4 a. cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: góc AMN=góic ACM
=>AM là tiếp tuyến của đường tròn ngoại tiếp ΔECM
=>góc AMB=90 độ
=>Tâm o1 của đường tròn ngoại tiếp ΔECM nằm trên BM
NO1 min khi NO1=d(N;BM)
=>NO1 vuông góc BM
Gọi O1 là chân đường vuông góc kẻ từ N xuống BM
=>O1 là tâm đường tròn ngoại tiếp ΔECM có bán kính là O1M
=>d(N;tâm đường tròn ngoại tiếp ΔECM) nhỏ nhất khi C là giao của (O1;O1M) với (O) với O1 ;là hình chiếu vuông góc của N trên BM
Câu 3:
Thay x=-1 và y=0 vào (d), ta được:
-m+2m-1=0
hay m=1
a: Xét tứ giác HMKN có
I là trung điểm của HK
I là trung điểm của MN
Do đó: HMKN là hình bình hành
\(1:MSC:16\\ \dfrac{3}{4}=\dfrac{3\times4}{4\times4}=\dfrac{12}{16};\dfrac{3}{16}\\ 2:MSC:56\\ \dfrac{3}{7}\times=\dfrac{3\times8}{7\times8}=\dfrac{24}{56};\dfrac{7}{8}=\dfrac{7\times7}{8\times7}=\dfrac{49}{56}\)
Bài 4:
b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)