K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
10 tháng 3 2022

ta nhân 3 cả hai vế, được : 

\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)

hay 

\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)

\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)

3 tháng 4 2016

nhớ k nha

1/4.7+1/7.10+...+1/73.76=1/3.(3/4.7+3/7.10+..+3/73.76)

=1/3.(1/4-1/7+1/7-1/10+1/10-......+1/73-1/76)

=1/3.(1/4-1/76)

=1/3.9/38=3/38

nhớ k nha

3 tháng 4 2016

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{73}-\frac{1}{76}\)

\(=\frac{1}{4}-\frac{1}{76}\)

\(=\frac{9}{38}\)

12 tháng 4 2018

More images for 1−14 +14 −17 +...+197 −1100 =0,99·x2009 100100 −1100 =0,99x2009 99100 =0,99x2009 =>0,99x*100=2009*9999x=2009*99=>x=2009Vậy x=2009 Đúng 4 Sai 0 Diana Andrea đã chọn câu trả lời này.Đỗ Lê Tú Linh 26/12/2015 lúc 22:10 Báo cáo sai phạm

3 tháng 5 2018

\(\dfrac{x}{1.4}\)+\(\dfrac{x}{4.7}+\dfrac{x}{7.10}+\dfrac{x}{10.13}+\dfrac{x}{13.16}=\dfrac{5}{2}\) \(x.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)=\dfrac{5}{2}\) \(x.\left(\dfrac{1}{1}-\dfrac{1}{16}\right)=\dfrac{5}{2}\) \(x.\dfrac{15}{16}=\dfrac{5}{2}\) \(x=\dfrac{5}{2}:\dfrac{15}{16}\) \(x=\dfrac{80}{30}=\dfrac{8}{3}\) DAY LA BAI LAM CUA MK NHO TICK CHO MK NHA CAM ON BAN TRUOC

15 tháng 5 2017

\(3B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}.\)

\(3B=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{103-100}{100.103}\)

\(3B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}=1-\frac{1}{103}=\frac{102}{103}\)

\(B=\frac{102}{3.103}=\frac{34}{103}\)

15 tháng 5 2017
3B=3/1.4+3/4.7+3/7.10+...+3/100.103 3B=(4-1)/1.4+(7-4)/4.7+(10-7)/7.10+...+(103-100)/100.103 3B=1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103=1-1/103=102/103 B=102/(3.103)=34/103
17 tháng 7 2018

Đặt biểu thức trên là A. Ta có:

3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/2016/2019

3A = 1-1/4 +1/4-1/7+1/7-1/10/+ ... + 1/2016-1/2019

3A = 1-1/2019=2018/2019

A =1009/2019

17 tháng 7 2018

Ta có:

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2016}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{2019}\right)\)

\(=\frac{1}{3}.\frac{2018}{2019}\)

\(=\frac{2018}{6057}\)

27 tháng 4 2016

Ta thấy: 1/1-1/4 = 3/4 = 3.(1/1.4)

           1/4-1/7 = 3/28 = 3.(1/4.7)

A = 3(1/1-1/4+1/4-1/7+...+1/97-1/100)

A = 3.(1-1/100)

A = 3.(99/100)

A = 297/100

27 tháng 4 2016

\(A=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{3}.\frac{99}{100}\)

\(A=\frac{33}{100}\)

30 tháng 4 2019

Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{2014\cdot2017}\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(\frac{3}{1\cdot3}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{2014\cdot2017}\right)\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{2017}\right)=\frac{1}{3}-\frac{1}{6051}< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)

30 tháng 4 2019

Ta có :

\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2014.2017}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{3}.\frac{2016}{2017}< \frac{1}{3}\left(đpcm\right)\)