I x I = 2.1
IxI = 3/4 và x < 0
IxI = -1 2/5
IxI = 0,35 va x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x\right|=2,1\)
\(\Rightarrow x=+_-2,1\)
\(\left|x\right|=\frac{17}{9}vax< 0\)
\(\Rightarrow x=-\frac{17}{9}\)
\(\left|x\right|=\frac{1}{\frac{2}{5}}=\frac{5}{2}\)
\(\Rightarrow x=+_-2,5\)
\(\left|x\right|=0,35vax>0\)
\(\Rightarrow x=0,35\)
Câu 1:
a)|x|=2,1
Suy ra:\(x=\frac{21}{10};-\frac{21}{10}\)
b)|x|=1
|x|=\(\frac{2}{5}\)
TH1:x có dạng \(\frac{a}{a};-\frac{a}{a}\)(a thuộc mọi điều kiện)
TH2:\(x=\frac{2}{5};-\frac{2}{5}\)
c)|x|=\(\frac{17}{9}\);x<0
TH1:\(x=\frac{17}{9};-\frac{17}{9}\)
TH2:Vì ko có giá trị tuyệt đối nào nhỏ hơn ko
Suy ra x thuộc tập rỗng
d)|x|=0,35 và x>0
TH1:\(x=\frac{7}{20};-\frac{7}{20}\)
TH2:Vì x>0 suy ra x thuộc mọi điều kiền (trừ số 0)
Câu 2:
a)|x-1,7|=2,3
Suy ra:
TH1:x-1,7=2,3
x=4
TH2:x-1,7=-2,3
x=-0,6
Vậy x=4;-0,6
b)\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
TH1:\(x+\frac{3}{4}=\frac{1}{3}\)
\(x=-\frac{5}{12}\)
TH2:\(x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{13}{12}\)
Vậy \(x=-\frac{5}{12}\);\(x=-\frac{13}{12}\)
\(\left|x\right|=\frac{3}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-3}{4}\end{cases}}\)
mà \(x< 0\)nên \(x=\frac{-3}{4}\)
vậy \(x=\frac{-3}{4}\)
\(\left|x\right|=0,35\)
\(\left|x\right|=\frac{7}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{20}\\x=\frac{-7}{20}\end{cases}}\)
mà \(x>0\)nên \(x=\frac{7}{20}\)
vậy \(x=\frac{7}{20}\)
|x|=3/4 => x=3/4 hoặc x= -3/4
|x|=0,35 => x=0,35 hoặc x= -0,35
1 ) \(\left(x-4\right)^2-25=0\)
\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)
2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)
\(\Leftrightarrow-2\left(2x-4\right)=0\)
\(\Leftrightarrow x=2.\)
3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)
4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)
5 ) \(x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)
6 ) \(x^3+x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
7 ) \(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=-1.\)
8 ) \(x^4-4x^3-19x^2+106x-120=0\)
\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)
\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)
\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)
\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)
Đặt \(x^2+6x-7=t\)
\(\Leftrightarrow t\left(t-9\right)+8=0\)
\(\Leftrightarrow t^2-9t+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)
Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)
Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)
Vậy ........
Bài 1:
\(a)\left(\dfrac{-28}{29}\right).\left(\dfrac{-38}{16}\right)=\dfrac{\left(-28\right).\left(-38\right)}{29.16}=\dfrac{1064}{464}=\dfrac{133}{58}\)
\(b)\left(\dfrac{-21}{16}\right).\left(\dfrac{-24}{7}\right)=\dfrac{\left(-21\right).\left(-24\right)}{16.7}=\dfrac{504}{112}=\dfrac{9}{2}\)
\(c)\left|\dfrac{-12}{17}\right|.\left(\dfrac{-34}{9}\right)=\dfrac{12}{17}.\left(\dfrac{-34}{9}\right)=\dfrac{12.\left(-34\right)}{17.9}=\dfrac{-408}{153}=\dfrac{-8}{3}\)
Bài 3:
\(a)\left|x\right|=21\)
\(\Rightarrow\left[{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)
\(b)\left|x\right|=\dfrac{17}{9};x< 0\)
\(\Rightarrow x=\dfrac{-17}{9}\)
\(c)\left|x\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(\left|x\right|=\dfrac{2}{5}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-2}{5}\end{matrix}\right.\)
\(d)\left|x\right|=0,35;x>0\)
\(\Rightarrow x=0,35\)
Bài 4:
\(a)\left|x\right|-1,7=2,3\)
\(\Rightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-3}{5}\end{matrix}\right.\)
\(b)\left|x\right|+\dfrac{3}{4}-\dfrac{1}{3}=0\)
\(\Rightarrow\left|x\right|+\dfrac{3}{4}=0+\dfrac{1}{3}\)
\(\Rightarrow\left|x\right|+\dfrac{3}{4}=\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=\dfrac{-1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=\dfrac{-13}{12}\end{matrix}\right.\)
Chúc bạn học tốt!
1,-12(x-5)+7(3-x)=5
=>-12x+60+21-7x=5
=>-12x-7x+60+21=5
=>-19x+81=5
=>-19x=5-81
=>-19x=-76
=>x=(-76):(-19)
=>x=4
2,(x-2) (x+4) =0
=>+,x-2=0 => x=2
+,x+4=0 => x=-4
Vậy x=2 hoặc x=-4
3,(x-2) (x+15) =0
=>+,x-2=0 =>x=2
+,x+15=0 =>x=-15
Vậy x=2 hoặc x=-15
4,(7-x) (x+19) =0
=>+,7-x=0 =>x=7
+,x+19=0 =>x=-19
Vậy x=7 hoặc x=-19
5,(x-3) (x-5)<0
=>x-3 và x-5 là hai số khác dấu
TH1
+,x-3<0 =>x<3(1)
+,x-5>0 =>x>5 (2)
Từ (1) và(2) => 5<x<3(Vô lí nên trường hợp này bị loại)
TH2
+,x-3>0 =>x>3 (3)
+,x-5<0 =>x<5 (4)
Từ (3) và (4) =>3<x<5 => x=4
Vậy x=4
Chú bn hc tốt hơn nha!!
IxI=2.1
=>x=I2.1I=2.1
IxI=3/4 và x<0
=>x=I3/4I=3/4=0.75=>x không có
IxI=0,35 và x>0
=>x=I0,35I=0,35