K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điểm D ở đâu vậy bạn?

a: BC=10cm

b: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó:ΔBAD=ΔBED

Suy ra: \(\widehat{ABD}=\widehat{EBD}\)

hay BD là tia phân giác của góc ABC

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

9 tháng 4 2022

a, BA = BD (gt)

=> Δ ABD cân tại B (đn)

góc ABC = 60 (gt)

=> Δ ABD đều (dấu hiệu)

b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)

Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => Δ IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

Xét Δ BIA và Δ CID có:

 DI=AI (Δ BIA=Δ BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vìΔ IBC cân)

=>ΔBIA=Δ CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm

Áp dụng định lí py-ta-go ta có:

BC2=AB2+AC2

=> AC2=BC2−AB2

=> AC2=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

2 tháng 7 2017

25 tháng 1 2019

A B C D E I F M

a) Xét trong tam giác BIC từ định lí tổng 3 góc của một tam giác bằng 10 độ

=>  \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}\)\(=180^o-\frac{1}{2}\widehat{ABC}-\frac{1}{2}\widehat{ACB}\)( tính chất phân giác)

\(=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)

Mà xét trong tam giác ABC cũng từ định lí tổng ba góc của một tam giác bằng 180 độ

=> \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BCA}=180^o-60^o=120^o\)

=> \(\widehat{BIC}=180^o-\frac{1}{2}.120^o=120^o\)

b) Xét tam giác BEI và tam giác BFI

Hai tam giác này bằng nhau theo trường hợp góc cạnh góc (tự chứng minh)

=> \(\widehat{EIB}=\widehat{FIB}\)

Mà \(\widehat{EIB}=\widehat{DIC}=180^o-\widehat{BIC}=60^o\)

=> \(\widehat{BIF}=60^o\Rightarrow\widehat{CIF}=\widehat{BIC}-\widehat{BIF}=120^o-60^o=60^o\)

=> \(\widehat{CID}=\widehat{CIF}\)

Xét Tam giác IDC và tam giác IFC có: 

IC chung

\(\widehat{CID}=\widehat{CIF}\)

\(\widehat{FIC}=\widehat{DIC}\)

=> \(\Delta CID=\Delta CIF\)(g-c-g)