Cho tg ABC, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB. Trên tia đối của tia BC lấy điểm E sao cho BE=BC. Gọi I là giao điểm của AB và DE. Chứng minh IA=IB
GIÚP MIK VỚI MIK HỨA LÀ SẼ TẶNG 3 TICK ~~~ HỨA THẬT LÒNG LUN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
SUy ra: AD//BC và AD=BC
=>AD//BE và AD=BE
=>ADBE là hình bình hành
=>Hai đường chéo AB và DE cắt nhau tại trung điểm của mỗi đường
hay I là trung điểm của AB
=>IA=IB
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra:AD//BC và AD=BC
hay AD//BE và AD=BE
Xét tứ giác AEBD có
AD//BE
AD=BE
Do đó: AEBD là hình bình hành
Suy ra: AB và ED cắt nhau tại trung điểm của mỗi đường
=>I là trung điểm của AB
hay IA=IB
\(Xét\)\(\Delta AMB\)và \(\Delta DMC\)có:
\(AM=MC\)(M là trung điểm của AC)
\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)
\(BM=MC\)(gt)
=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)
Mà 2 góc này ở vị trí so le trong
=>AB//DC
=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)
Xét \(\Delta ABE\)và \(\Delta DCB\)có:
\(AB=DC\)
\(\widehat{ABE}=\widehat{DCB}\)
\(EB=BC\)
=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)
=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)
Mà 2 góc này ở vị trí đồng vị
=>AE//BD
Xét \(\Delta AIE\)và \(\Delta BID\)có:
\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)
\(AE=DC\)
\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)
=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)
=>\(AI=BI\)
Vậy AI=IB