K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

\(2^{x+1}.3^y=12^x=>2^{x+1}.3^y=2^{2x}.3^x=>\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}=>2^{x-1}=3^{y-x}=>x-1=y-x=0\)

=>x=y=1

vậy x+y=2

15 tháng 9 2017

1. khi a =12 thi b co the la 13 hoac 14

2.khi hieu b-a lon nhat thi b=14,a=11

 hieu b-a be nhat thi ta co 3 truong hop

khi b bang 14 thi a =13

khi b bang 13 thi a bang 12

khi b bang 12 thi a =11

25 tháng 12 2016

A lộn 21 nha 

25 tháng 12 2016

trình bày cach giải giùm mình đi

23 tháng 2 2019

Nhỡ đâu \(a+\dfrac{b^2}{a}\)hoặc \(b+\dfrac{a^2}{b}\)chia hết cho 7 thì sao bạn ?

23 tháng 2 2019

Ta có: \(a^2+b^2⋮7\)

\(\Leftrightarrow a\left(a+\dfrac{b^2}{a}\right)⋮7\Rightarrow a⋮7\)

\(\Leftrightarrow b\left(b+\dfrac{a^2}{b}\right)⋮7\Rightarrow b⋮7\)

23 tháng 4 2017

Giải:

Theo đề bài ta có:

\(8b-9a=31\Rightarrow b=\dfrac{31+9a}{8}\)

\(=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\) \(\in N\)

\(\Rightarrow\dfrac{a-1}{8}\in N\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k+1\left(k\in N\right)\)

Khi đó: \(b=\dfrac{31+9\left(8k+1\right)}{8}=9k+5\)

\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)

\(\Rightarrow11\left(9k+5\right)< 17\left(8k+1\right)\Rightarrow37k>38\) \(\Rightarrow k>1\left(1\right)\)

\(29\left(8k+1\right)< 23\left(9k+5\right)\Rightarrow25k< 86\) \(\Rightarrow k< 4\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow1< k< 4\Leftrightarrow k\in\left\{2;3\right\}\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(k=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.2+1\\b=9.2+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\)

Trường hợp 2: Nếu \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.3+1\\b=9.3+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\)

Vậy \(\left(a,b\right)=\left(17;23\right);\left(25;32\right)\)