K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

Cho tam giác ABC vuông tại A Có đường cao AH. HE vuông góc AC, HF vuông góc AB
C/m CE/BF = AC3/AB3

29 tháng 6 2016

Mình report bạn đấy Messi Vietnam

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}BH\cdot BC=AB^2\\CH\cdot BC=AC^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}\\CH=\dfrac{AC^2}{BC}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{BC}\cdot\dfrac{BC}{AC^2}=\dfrac{AB^2}{AC^2}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(BE\cdot BA=HB^2\)

\(\Leftrightarrow BF=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(CF\cdot CA=CH^2\)

hay \(CF=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BE}{CF}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{AB^4\cdot AC}{AC^4\cdot AB}=\left(\dfrac{AB}{AC}\right)^3\)

anh ơi có thể làm phần a và phần b giúp em với 

 

11 tháng 11 2021

Câu 15:

a: ĐKXĐ: x>=0; x<>1

22 tháng 6 2021

câu b bạn tham khảo ở đây

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-goi-ef-theo-thu-tu-la-hinh-chieu-cua-h-tren-ab-aca-chung-minh-bcabcdot-sincaccdot-coscb-chung-minh-afcdot-ac2efcdot-bccdot-aecchung-minh.1076798870119

22 tháng 6 2021

a) \(HF\parallel AB\) \(\Rightarrow\dfrac{HF}{AB}=\dfrac{CF}{CA}\Rightarrow\dfrac{HF}{CF}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HF}{CF}.\dfrac{AB^2}{AC^2}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF}{CF}.\dfrac{BH.BC}{CH.BC}=\dfrac{AB^3}{AC^3}\)

\(\Rightarrow\dfrac{HF.BH}{CF.CH}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF.BH}{CH}.\dfrac{1}{CF}=\dfrac{AB^3}{AC^3}\left(1\right)\)

Ta có: \(HF\parallel AB\)\(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle CHF=\angle CBA\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{BH}=\dfrac{HF}{HC}\Rightarrow BE.HC=HF.BH\)

\(\Rightarrow BE=\dfrac{HF.BH}{HC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{BE}{CF}=\dfrac{AB^3}{AC^3}\)

 

BC=căn 3^2+4^2=5cm

=>AH=3*4/5=2,4cm

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hcn

=>AH=EF=2,4cm