K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

a, \(A+B=4x^5-7y^2+2xy-x-5y-14-6x^5-2y^2+3x-15y+6=-2x^5-9y^2+2xy+2x-20y-8\)

\(A-B=4x^5-7y^2+2xy-x-5y-14+6x^5+2y^2-3x+15y-6=10x^5-5y^2+2xy-4x+10y-20\)

b, A + B bậc 5 ; A - B bậc 5 

30 tháng 8 2021

a) Ta có: M=x2−2xy+y2−10x+10yM=x2−2xy+y2−10x+10y

=(x−y)2−10(x−y)=(x−y)2−10(x−y)

=92−10⋅9=−9                                                                                                               mình bt thế thôi mog bn thông cảm.

30 tháng 8 2021

a) Ta có: M=x2−2xy+y2−10x+10yM=x2−2xy+y2−10x+10y

=(x−y)2−10(x−y)=(x−y)2−10(x−y)

=92−10⋅9=−9

24 tháng 11 2021

K hiểu 😐😐😐

24 tháng 11 2021

\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)

\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Bài 1:

a. $x(x^2-5)=x^3-5x$

b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$

c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$

d.

$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$

 

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Bài 2:
a.

\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)

b.

\((x-3)^2=x^2-6x+9\)

c.

\((4+3x)^2=9x^2+24x+16\)

d.

\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)

e.

\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)

\(=125x^3+225x^2y+135xy^2+27y^3\)

f.

\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)

10 tháng 10 2021

Chọn B

22 tháng 8 2020

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

Thay \(x-y=7\)vào biểu thức ta được: 

\(A=7^2+2.7+37=49+14+37=100\)

b) Ta có: \(x+y=3\)\(\Rightarrow\left(x+y\right)^2=9\)\(\Rightarrow x^2+y^2+2xy=9\)

mà \(x^2+y^2=5\)\(\Rightarrow5+2xy=9\)

\(\Rightarrow2xy=4\)\(\Rightarrow xy=2\)

Vậy \(xy=2\)

22 tháng 8 2020

a) A = x( x + 2 ) + y( y - 2 ) - 2xy + 37

= x2 + 2x + y2 - 2y - 2xy + 37

= ( x2 - 2xy + y2 ) + ( 2x - 2y ) + 37

= ( x - y )2 + 2( x - y ) + 37

Thế x - y = 7 vào A ta được :

A = 72 + 2.7 + 37 = 49 + 14 + 37 = 100

Vậy A = 100 khi x - y = 7

b) x + y = 3 => ( x + y )2 = 9

=> x2 + 2xy + y2 = 9

=> 5 + 2xy = 9 ( sử dụng gt x2 + y2 = 5 )

=> 2xy = 4

=> xy = 2 

b: Ta có: \(B=x^2\left(11x-2\right)+x^2\left(x-1\right)-3x\left(4x^2-x-2\right)\)

\(=11x^3-2x^2+x^3-x^2-12x^3+3x^2+6x\)

\(=6x\)

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)

1: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)

\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)

\(=x^2-8x+3\)

2: \(\dfrac{-3x^3+5x^2-9x+15}{-3x+5}\)

\(=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)

\(=x^2+3\)

25 tháng 11 2021

\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)

25 tháng 11 2021

mình thấy chưa triệt để