K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

Giúp Mình với

12 tháng 6 2016

Mi hả Đức ta Gia Huy nè !

7 tháng 10 2016

! là j z

 

7 tháng 10 2016

\("!"\)  là giai thừa đó bạn ạ .

\(VD:\)  \(3!=1.2.3=6\)

          \(4!=1.2.3.4=24\)

11 tháng 9 2016

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\left(đpcm\right)\)

27 tháng 3 2017

"!" là gì vậy

27 tháng 6 2016

\(VT=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+\frac{1}{3!}-\frac{1}{5!}+...+\frac{1}{97!}-\frac{1}{99!}+\frac{1}{98!}-\frac{1}{100!}\)

\(VT=2-\frac{1}{100!}< 2\)đpcm

Ta xét vế trái nha 

\(VT=\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+.....+\frac{99.100-1}{100}\)

\(=1-\frac{1}{2}+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}......+\frac{1}{98}-\frac{1}{100}\)

\(=2-\frac{1}{100}\)

\(=>VT< VP\)

3 tháng 9 2017

Ta xét :

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=2-\frac{1}{99}-\frac{1}{100}\)

Mà \(2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\RightarrowĐPCM\)

28 tháng 8 2017

 1.2−12! +2.3−13! +3.4−14! +....+99.100−1100=2 suy ra 1.2−12! +2.3−13! +3.4−14! +....+99.100−1100<2

5 tháng 9 2015

 

\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(\left(2+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(2-\frac{1}{99!}-\frac{1}{100!}

30 tháng 6 2018

tớ là một youtuber link đây https://www.youtube.com/channel/UCRoT6fvb0VTS8S1EFsH0qGg?sub_confimation=1 nhớ đăng ký, , chia sẻ ủng hộ giúp mình nhé

5 tháng 9 2015

ta có:

1.2-1/2!+2.3-1/3!+3.4-1/4!+...+99.100-1/100!

=1.2/2!-1/2!+2.3/3!-13!+...+99.100-1/100!

=(1.2/2!+2.3/3!+3.4-4!+...+99.100/100!)-(1/2!+1/3!+...+1/100!)

=(1+1+1/2+...+1/98!)_(1/2!+1/3!+...+1/100!)

=2-1/99!-1/100!<2

12 tháng 9 2017

Ta xét :

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(=1+1-\frac{1}{99}-\frac{1}{100}\)

\(=2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\RightarrowĐPCM\)

23 tháng 6 2016

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+............+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+..........+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+.........+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+.....+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+.........+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

\(\Rightarrowđpcm\)