Cho ΔABC cân tại A (Â < 90o). Gọi I là trung điểm của BC. Kẻ IH ⊥ BA (H ∈ AB), IK ⊥ AC (K ∈ AC)
a) Chứng minh ΔIHB = ΔIKC
b) So sánh IB và IK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có
IB=IC
\(\widehat{HBI}=\widehat{KCI}\)
Do đó: ΔIHB=ΔIKC
b: Ta có: ΔIHB=ΔIKC
nên IB=IC
mà IB>IK
nên IB>IK
c: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
HI=KI
Do đó: ΔAHI=ΔAKI
Suy ra: AH=AK
Xét ΔHIE vuông tại H và ΔKIF vuông tại K có
IH=IK
\(\widehat{HIE}=\widehat{KIF}\)
Do đó: ΔHIE=ΔKIF
Suy ra: HE=KF
Ta có: AH+HE=AE
AK+KF=AF
mà AH=AK
và HE=KF
nên AE=AF
hay ΔAEF cân tại A
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Suy ra: AB=AC
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: AB=12cm
nên IA=6cm
=>IC=8cm
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có
IB=IC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔIHB=ΔIKC
b: Ta có: ΔIHB=ΔIKC
nên IH=IK
mà IH<IB
nên IK<IB