Cho các đa thức \(P\left(x\right)\)và \(Q\left(x\right)\)thỏa mãn \(P\left(x\right)=\frac{1}{2}\left(Q\left(x\right)+Q\left(1-x\right)\right)\)với mọi số thực \(x\). Biết rằng các hệ số của \(P\left(x\right)\)là các số nguyên không âm và \(P\left(0\right)=0\). Tính \(P\left(3P\left(3\right)-P\left(2\right)\right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(P\left(x\right)=Q\left(x\right)+Q\left(1-x\right)\)
+)\(x=0\) \(\implies\) \(P\left(0\right)=Q\left(0\right)+Q\left(1\right)=0\)
+)\(x=1\) \(\implies\) \(P\left(1\right)=Q\left(1\right)+Q\left(0\right)\)
\(\implies\) \(P\left(0\right)=P\left(1\right)=0\)
Đặt đa thức : P(x) = an . \(x^n\) + an - 1 . \(x^{n-1}\) + ...... + a1 . \(x^1\) + a0
P(x) là đa thức bậc n ; có các hệ số là : an ; an - 1; .... ; a1 ; a0
P(1) = an + an - 1 + ......... + a1 + a0 = 0
Mà a0 ; a1 ; ..... ; an - 1 ; an \(\geq\) 0
\(\implies\) an + an - 1 + ... + a1 + a0 \(\geq\) 0
\(\implies\) P(x) \(\geq\) 0
Dấu " = " xảy ra \(\iff\) a0 = a1 = ..... = an - 1 = an = 0
\(\implies\) P(x) = 0 với mọi x \(\in\) R
\(\implies\) P(7) = 0
\(\implies\) P(P(7)) = P(0) = 0
Vậy P(P(7)) = 0
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ
(x-1) x f(x)=(x+2) x f(x+3)
Thay x=1 : (1-1) x f(1) = (1+2) x f(1+3)
=>f(4)=0
Thay x=-2 :(-2-1) x f(-2) = (-2+2) x f(-2+3)
=>f(-2)=0
Thay x=4(thay bang 0 vi f(4)=0).....
Thay x=7 (ket qua o tren)
Thay x=10 kq o tren
vay 5 nghiem la 1;2;4;7;10
mk chi tom tat thoi nha chuc bn hoc tot
Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi
Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)
\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)
\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z
Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))
Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)
Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)
\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)
Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)
\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)
BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Chứng minh hoàn tất
Em sửa chút cho bài làm ngắn gọn hơn.
Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)
BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)
Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!