phân tích đa thức thành nhân tử:
1)x-5(x>0)
2)3+4x(x<0)
rút gọn biểu thức
1)x-(5 căn x)+6/(căn x)-3(x>=0,x><9)
2)6-2x-(căn của 9-6x+x^2) (x<3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)
\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)
\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )
\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)
\(\left(x+1\right)\left(x+2\right)-\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1-x-3\right)=0\)
\(\Leftrightarrow-2\left(x+2\right)=0\)
\(\Leftrightarrow x=-2\)
Bài 2:
a: =>4x(x+5)=0
=>x=0 hoặc x=-5
b: =>(x+3)(x-3)=0
=>x=-3 hoặc x=3
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
\(1,=8xy+14y^2-4xz-7yz\\ 2,=y\left(4x^2-12x+9\right)=y\left(2x-3\right)^2\\ 3,\Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Câu 1: \(\left(2y-z\right)\left(4x+7y\right)=8xy-4xz+14y^2-7yz\)
câu 2: \(4x^2y-12xy+9y=y\left(4x^2-12x+9\right)\)
câu 3: \(\left(x-2\right)\left(x+3\right)+x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2x-2\right)=0\\ \Leftrightarrow2\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
\(x^4+x^3+2x^2+x+1\\ =\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+1\right)\left(x^2+x+1\right)\)
\(4x^2-3x-1=0\\ \Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{4}\end{matrix}\right.\)