tìm x
13-(2+x)=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 75 : ( x - 18 ) = 52 = 25
=> x - 18 = 3
=> x = 21
b) 740 : ( x - 10 ) = 102 - 2 x 13
740 : ( x - 10 ) = 100 - 26 = 74
=> x - 10 = 10
=> x = 20
c) ( 2x - 5 )3 = 8 = 23
=> 2x - 5 = 2
=> 2x = 7
=> x= 7/2
d) ( 15 - 6x ) x 35 = 36
=> ( 15 - 6x ) = 36 : 35 = 3
=> 6x = 12
=> x = 2
Ta có: \(26\times8+4\times13-10\times26\)
\(=13\times2\times8+4\times13-10\times2\times13\)
\(=13\times16+4\times13-20\times13\)
\(=13\times\left(16+4-20\right)=13\times0=0\)
\(x^2-\left(m+2\right)x+m=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(m+2\right)^2-4m\ge0\)
\(\Leftrightarrow m^2+4\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) luôn có nghiệm.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)
\(A=x_1^3-\left(m+1\right)x_1^2+mx_1-5m\)
\(=x_1^3-\left(x_1+x_2-1\right)x_1^2+x_1\left(m-5\right)\)
\(=x_1^3-x_1^3-x_1^2x_2+x_1^2+x_1\left(x_1x_2-5\right)\)
\(=-x_1^2x_2+x_1^2+x_1^2x_2-5x_1\)
\(=x_1^2-5x_1=\left(x_1^2-5x_1+\dfrac{25}{4}\right)-\dfrac{25}{4}=\left(x_1-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)
Vậy \(MinA=-\dfrac{25}{4}\).
a) y - 6 : 2 - (48 - 24 x 2 : 6 - 3) = 0
y - 3 - (48 - 48 : 6 - 3) = 0
y - 3 - (48 - 8 - 3) = 0
y - 3 - 37 = 0
y - ( 3+37) = 0
y - 40 =0
y =0+40
Y =40
b) ( 7x13 - 8x13) : ( 9 2/3 -y) =39
(7+8)x13 : (29/3 - y) =39
15 x 13 : (29/3-y) =39
195 : (29/3 - y) =39
29/3 - y =195 : 39
29/3 - y = 5
y = 29/3 - 5
y = 14/3
a)
3. x 13 = 45 − 26 . − 2 5 3. x 13 = 9 13 3. x = 9 x = 3
b)
13 21 − 3 2 . 21 13 + x = 4 13 − 27 42 . 21 13 + x = 4 13 − 27 26 + x = 4 13 x = 4 13 − − 27 26 x = 35 26
\(B=\frac{2^{10}.13+65.2^{10}}{2^8.104}\)
\(B=\frac{2^8.2^2\left(13+65\right)}{2^8.104}\)
\(B=\frac{2^2.3.26}{2^2.26}\)
B = 3
\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)
Số hạng chứa \(x^{13}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\)
\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)
\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)
Hệ số....
13-(2+x)=10
2+x=13-10
2+x=3
X=3-2
x=1