tìm số nguyên n nhỏ nhất sao cho n vừa là tổng của 5 số nguyên dương liên tiếp ,vừa là tổng của 7 số nguyên dương liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của 5 số nguyên dương liên tiếp có dạng: \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)
(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)
Làm tương tự với tổng của 7 số và 9 số
Suy ra số cần tìm chia hết cho 5,7,9
Mà BCNN(5,7,9)=315 nên số cần tìm là 315
python
n = int(input("Nhập số nguyên dương N: "))
found = False
for i in range(1, n//2+1):
sum = i
j = i + 1
while sum < n:
sum += j
j += 1
if sum == n:
found = True
start = i
end = j - 1
break
if found:
print(n, "có tổng của nhiều số nguyên dương liên tiếp:")
for k in range(start, end+1):
print(k, end=" ")
else:
print(n, "không có tổng của nhiều số nguyên dương liên tiếp.")
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Tìm các số nguyên dương n sao cho 36n-6 là tích của hai hoặc nhiều hơn các số nguyên dương liên tiếp
Đặt \(S=36^n-6\)
+Với n=1 => \(S=30=5.6\)thỏa mãn điều kiện đề bài
+Với n>1 :Ta thấy S chia hết cho 5 và 6 và không chia hết cho 4
=> \(S=5\cdot6\cdot.........\)
Do vậy để thỏa mãn đề bài thì S phải chia hết cho 7
Mà \(36^n=\left(6^n\right)^2\)chia 7 luôn dư 0,1,2,3,4
nên S không chia hết cho 7
=> với n>1 thì không có giá trị nào của n thỏa mãn đề bài
Vậy n=1 là giá trị duy nhất thỏa mãn đề bài
Tổng của 3 số nguyên dương liên tiếp đều là số nguyên nha bạn, vì khi ta lấy một số nguyên dương bất kì nhân với 3 thì ta sẽ có số ấy chia hết cho chính nó và chia hết cho 3
=> Nó là số nguyên
VD: 5+5+5 hay 5x3 = 15 \(⋮\)15,3,...
Tổng của 3 số nguyên dương liên tiếp đều là số nguyên nha bạn, vì khi ta lấy một số nguyên dương bất kì nhân với 3 thì ta sẽ có số ấy chia hết cho chính nó và chia hết cho 3
=> Nó là số nguyên
VD: 5+5+5 hay 5x3 = 15 ⋮ 15,3,...
chúc bn hok tốt @_@