Cho tam giác ABC cắt trung tuyến BD và CE. Trên tia BD lấy M, CE lấy N. Sao cho BD= 1/2 BM, CE= 1/2 CN. CMR: BC = 1nửa MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết suy ra E là trung điểm của NC, D là trung điểm của MB
Do đó NE=EC; BD=DM
Xét tam giác AEN và tam giác BEC có:
\(\Delta AEN=\Delta BEC\left(c.g.c\right)\hept{\begin{cases}AE=BE\\EN=EC\\\widehat{AEN}=\widehat{BEC}\left(2gócđốiđỉnh\right)\end{cases}}\)
=> \(\hept{\begin{cases}AN=BC\\\widehat{EAN}=\widehat{EBC}\Rightarrow AN\left|\right|BC\end{cases}\left(1\right)}\)
Tương tự ta có: tam giác ADM= tam giác CAB (c.g.c)
=>\(\hept{\begin{cases}AM=CB\\\widehat{DAM}=\widehat{DCB}\Rightarrow AM\left|\right|BC\end{cases}\left(2\right)}\)
Từ (1) và (2) ta có: AN+AM=2BC và A,N,M thẳng hàng
Do đó: AM+AN=MN <=> MN=2BC hay BC=1/2(đpcm)