Cho tam giác ABC và DBC vuông có chung cạnh huyền BC(A và D cùng 1 nửa mp bờ BC). vẽ tia Ax sao cho AC là pg góc DAx. vẽ tia Dy sao cho DB là pg ADy. Ax cắt Dy tại E. Gọi O là giao điểm của AC và BD. CMR: OE vuông góc với BE
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KN
9 tháng 3 2020
a) AC là phân giác của ^DAx (gt) mà ^BAC = 900 (gt) nên AB là phân giác ngoài tại đỉnh A của \(\Delta\)ADE
Kết hợp với DB là phân giác trong tại đỉnh D của \(\Delta\)ADE
=> BE là phân giác của ^AEy
Mà EO là phân giác của ^AED (3 đường phân giác trong của \(\Delta\)AED đồng quy tại 1 điểm )
=> ^BEO = 900 (hai đường phân giác của hai góc kề bù)
Vậy OE \(\perp\)BE (đpcm)
b) Chứng minh tương tự câu a, ta được OE \(\perp\)EC
Từ đó suy ra \(BE\equiv CE\)
Vậy B,E,C thẳng hàng (đpcm)