cho tam giác ABC vuông ở A , AB = 40cm , AC = 24cm . Trên cạnh AB lấy đoạn AD =10cm . Từ D kẻ đường thẳng song song với đoạn AC cắt BC tại E . Tính diện tích tam giác BDE
sáng mai nộp rồi, ai nhanh đúng nhất mk k cho 3 k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình ABC là:
40 x 50:2=1000(cm2)
Nối A với E ta được hình tam giác AEC sẽ có chiều cao là 10 cm mà đáy AC biết rồi .Vậy diện tích hình AEC là:
10 x 50:2=250(cm2)
Diện tích hình ABE là:
1000-250=750(cm2)
Đoạn DE dài số cm là:
750 x 2:40=37,5(cm)
Diện tích hình BDE là:
37,5 x (40-10):2=562,5(cm2)
Đáp số:562,5 cm2
Ta có diện tích hình ABC là :
40 x 50 : 2 = 100 ( cm2 )
Nối A vs E => Diện tích hình AEC là :
10 x 50 : 2 = 250 ( cm2 )
Diện tích của ABE là :
1000 - 250 = 750 ( cm2 )
DE dài số cm là :
750 x 2 : 40 = 37 , 5 ( cm )
Diện tích BDE là :
37,5 x ( 40 - 10 ) : 2 = 562,5 ( cm2 )
Đáp số : 562,5 ( cm 2 )
Ai t mik nhớ nói nha mik sẽ t lại cho
[mình viết tắt]
s aeb là
40x50:2-50x10;2=750[m2]
s bde là;
[750:40]x[40-10];2=281,25[m2]
dễ mình biết nhưng mình sẽ chỉ gợi ý
b1: tìm dieenj ích tg abc
Nối \(AE\), tam giác \(EAC\) có chiều cao bằng độ dài đoạn \(AD=10cm\).
Diện tích tam giác \(EAC\) bằng:
\(\frac{50\times10}{2}=250\left(cm^2\right)\)
Diện tích tam giác \(ABC\) bằng:
\(\frac{50\times40}{2}=1000\left(cm^2\right)\)
Diện tích tam giác \(BAE\) ( bằng diện tích tam giác \(ABC\) trừ đi diện tích tam giác \(EAC\) ):
\(1000-250=750\left(cm^2\right)\)
Chiều cao \(ED\) của tam giác \(BAE\) bằng:
\(\frac{750\times2}{40}=37,5\left(cm\right)\)
Độ dài cạnh \(BC\) bằng:
\(50-10=40\left(cm\right)\)
Vì \(DE\) song song với \(AC\) nên \(DE\) vuông góc với \(BD\). Vậy tam giác \(BDE\) là tam giác vuông tại \(D\) và có diện tích bằng:
\(\frac{40\times37,5}{2}=750\left(cm^2\right)\)
Đáp số: \(750cm^2\)
\(S\) \(ABC:\frac{40\times50}{2}=1000\left(cm^2\right)\)
\(S\) \(AEC:\frac{50\times10}{2}=250\left(cm^2\right)\)
\(S\) \(ABE:1000-250=750\left(cm^2\right)\)
\(DE:\frac{750\times2}{40}=37,5\left(cm\right)\)
\(S\) \(BDE:\frac{37,5\times30}{2}=562,5\left(cm^2\right)\)
Ta có : DC = AC - AD = 40 - 10 = 30 cm
Vì DE // AB Theo hệ quả Ta lét ta có :
\(\dfrac{DC}{AC}=\dfrac{DE}{AB}\Rightarrow\dfrac{30}{40}=\dfrac{DE}{30}\Rightarrow DE=\dfrac{30.30}{40}=\dfrac{900}{40}=22,5\)cm
Xét ΔBAC có DE//AB
nên DE/AB=CD/CA
=>DE/30=30/40=3/4
=>DE=90/4=22,5cm
Giai:
\(\frac{DE}{CA}=\frac{BD}{BA}=\frac{3}{4}\)
\(\Rightarrow DE=37,5cm\)
\(S_{BDE}=\frac{1}{2}BD.DE=562,5cm^2\)