Cho tam giác ABC (AC>AB). Gọi M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC. AH là đường cao của tam giác ABC. a)CM: MN là trung trực của AH b)CM: Tứ giác MNPH là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ lắm
câu a bạn tự làm nha vì nó quá dễ rồi
b) Mình xin đính chính lại là P là trung điểm của AB chứ không phải B, bạn viết lộn rùi
Gọi O là giao điểm của PN và AH
Ta có: P là trung điểm của AB (gt)
BO// BH ( t/c đướng trung bình, đã cm ở câu a)
=> O là trung điểm của AH => AO = OH
Xét tam giác APO và tam giác HPO có:
BO là cạnh chung
Góc POH = góc POA = 90 độ ( PN là đướng trung trực của AH )
AO = HO (cmt)
=> Tam giác APO = tam giác HPO ( c-g-c)
=> Góc OPH = góc OPA ( 2 góc tương ứng) (5)
Ta có: PN là đướng trung bình của tam giác ABC ( cm ở câu a)
=> PN = \(\frac{1}{2}\)BC (1) => PN // BC
Mà M là trung điểm của BC (gt) => BM = MC = \(\frac{1}{2}\)BC (2)
Từ (1) và (2) => PN = BM = MC hay PN = BM, PN = BM (3)
Ta lại có: PN//BC => PN//BM (4)
Từ (3) và ( 4) => PNMB là hình bình bình hành => NM //PB => NM//AP => góc OPA = góc MNP ( cặp góc slt) (6)
Mà PN//HM ( PN//BC, t/c đướng trung bình) => MNPH là hình thang (7)
Từ(5), (6) và (7) MNPH là hình thang cân
Bài 1:
a: Ta có: ΔABH vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên \(HM=\dfrac{AB}{2}=AM=BM\)
Ta có: ΔACH vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên \(HN=\dfrac{AC}{2}=AN=NC\left(1\right)\)
Ta có: MA=MH
nên M nằm trên đường trung trực của AH(1)
Ta có: NA=NH
nên N nằm trên đường trung trực của AH(2)
từ (1) và (2) suy ra MN là đường trung trực của AH
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
hay MN//HP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình của ΔABC
Suy ra: \(MP=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//PH
nên MNPH là hình thang
mà MP=HN
nên MNPH là hình thang cân
Đừng có hỏi nữa