K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

A B C D E M N

a, sửa tìm các tam giác đồng dạng nhé 

Xét tam giác AME và tam giác ADC ta có : ME // DC 

\(\frac{AM}{MD}=\frac{AE}{CE}\)( theo định lí Ta lét ) 

^A chung

Vậy tam giác AME ~ tam giác ADC ( c.c.c )

\(\Rightarrow\frac{ME}{DC}=\frac{AE}{AC}\)( tỉ số đồng dạng ) 

22 tháng 3 2021

b, Xét tam giác ADC ta có : ME // DC 

\(\Rightarrow\frac{AM}{AD}=\frac{AE}{AC}=\frac{ME}{DC}\)( theo hệ quả Ta lét )

Xét tam giác ACB ta có : EN // AB 

\(\Rightarrow\frac{CE}{AC}=\frac{CN}{BC}=\frac{EN}{AB}\)( theo hệ quả Ta lét )

giả sử : E là trung điểm MN khi  \(\frac{ME}{DC}=\frac{NE}{AB}\)

mà \(DC=AB\)( do ABCD là hình bình hành )

Suy ra : \(ME=NE\)hay E là trung điểm MN 

30 tháng 6 2019

Vì ABCD là hình bình hành nên ME // DE và EN // AB.

+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng  A E A C = 1 3

+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC

=> ΔCBA ~ ΔADC

ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1

+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng  C E A C = 2 3

Vậy cả (I), (II), (III) đều đúng.

Đáp án: C

1 tháng 3 2023

Bài này là: Bài 27 trang 72 Toán 8 Tập 2 đúng không bạn 

a) \(\Delta ABC\)\(MN\) // \(BC\) \(\left(M\in AB;N\in AC\right)\Rightarrow\Delta AMN\sim\Delta ABC\) (định lí)

\(\Delta ABC\) có \(ML\) // \(AC\) \(\left(M\in AB;L\in BC\right)\Rightarrow\Delta MBL\sim\Delta ABC\) (định lí)

\(\Delta AMN\sim\Delta ABC\) và \(\Delta MBL\sim\Delta ABC\)

\(\Rightarrow\Delta AMN\sim\Delta MBL\)

b) Xét \(\Delta AMN\sim\Delta ABC\) có:

\(\widehat{A}\) chung

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{C}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)

Tỉ số đồng dạng : \(k=\dfrac{AM}{AB}=\dfrac{1}{2}\left(AM=\dfrac{1}{2}MB\right)\)

Xét \(\Delta MBL\sim\Delta ABC\) có:

\(\widehat{B}\) chung

\(\widehat{BML}=\widehat{A};\widehat{MLK}=\widehat{C}\)

\(\dfrac{BM}{BA}=\dfrac{BL}{BC}=\dfrac{ML}{AC}\)

Tỉ số đồng dạng: \(k'=\dfrac{BM}{BA}=\dfrac{2}{3}\)

Xét \(\Delta AMN\sim\Delta MBL\) có:

\(\widehat{AMN}=\widehat{B};\widehat{ANM}=\widehat{BLM};\widehat{A}=\widehat{BML}\)

\(\dfrac{AM}{MB}=\dfrac{AN}{ML}=\dfrac{MN}{BL}\)

Tỉ số đồng dạng: \(k''=\dfrac{AM}{MB}=\dfrac{1}{2}\)

19 tháng 12 2017

25 tháng 9 2018

a: Xét ΔDAE và ΔBFE có

góc DAE=góc BFE

góc DEA=góc BEF

=>ΔDAE đồng dạng với ΔBFE

Xét ΔDEG và ΔBEA có

góc DEG=góc BEA

góc EDG=góc EBA

=>ΔDEG đồng dạng với ΔBEA

b: ΔDAE đồng dạng với ΔBFE

=>AE/FE=DE/BE=DA/BF

ΔDEG đồng dạng với ΔBEA

=>AE/EG=BE/DE

=>EG/AE=AE/FE
=>AE^2=EG*EF

7 tháng 3 2023

còn câu c thì ao bạn