phân tích đa thức sau thành nhân tử:
x2+x+4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^2+x+4x+4=x\left(x+1\right)+4\left(x+1\right)=\left(x+1\right)\left(x+4\right)\)
\(=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\)
Ta có: \(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
x2 + 4z2 - 4t2 - 4xt
= x2 - 4xt - 4t2 + 4z2
= 4t2 - 4xt + x2 + 4z2
= (2t - x)2 + 4z2
= \(-\left[\left(2t-x\right)^2-4z^2\right]\)
= \(-\left(2t-x-4z\right)\left(2t-x+4z\right)\)
Lm sao bn ra \(\left(2t-x\right)^2+4z^2=-\left[\left(2t-x\right)^2-4z^2\right]\) hay z?
`x^2-2x-4y^2+4y`
`=(x^2-4y^2)-2x+4y`
`=(x-2y)(x+2y)-2(x-2y)`
`=(x-2y)(x+2y-2)`
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
x2-10x+16=x2-8x-2x+16=(x2-8x)-(2x-16)=x(x-8)-2(x-8)=(x-8)(x-2)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\left(3x^2-1\right)-\left(x+3\right)^2\)
\(=\left(3x^2-1-x-3\right)\left(3x^2-1+x+3\right)\)
\(=\left(3x^2-x-4\right)\left(3x^2+x+2\right)\)
\(=\left(3x^2+3x-4x-4\right)\left(3x^2+x+2\right)\)
\(=\left(x+1\right)\left(3x-4\right)\left(3x^2+x+2\right)\)
đíu bt làm nka
\(x^2+x+\dfrac{1}{4}-\dfrac{1}{4}+4=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\)(vô lí)
Vậy pt vô nghiệm