Cho tam giác ABC vuông tại A.Biết AB=15cm,AC=20cm.Kẻ đường cao AE.
a)Chứng minh:tam giác BAC đồng dạn với tam giác BEA
b)Tính BC và AE
c)Kẻ phân giác của góc ABC cắt AC tại D.AE cắt BD tại M.Chứng minh:BM.BA=BD.BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) .
Xét 2 t/g vuông : ABC và HBA có:
góc B chung
do đó:
t/g ABC đồng dạng t/g HBA ( g - g )
b ) .
Áp dụng đl pytao vào t/g vuông ABC có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
vi t/g ABC đồng dạng t/g HBA
=> \(\dfrac{AC}{HA}=\dfrac{BC}{AB}\Leftrightarrow\dfrac{20}{HA}=\dfrac{25}{15}\Rightarrow HA=20:\dfrac{25}{15}=12\left(cm\right)\)
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)
hay AH=12(cm)
Vậy: AH=12cm
a: Xet ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
b: ΔCAB có DE//AB
nên CD/CB=DE/AB
=>CD/CE=CB/AB=15/9=5/3
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=15/7
=>BD=45/7cm
=>BD/BC=3/7
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot9\cdot12=108\cdot\dfrac{3}{14}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)
a: Xét ΔMBN và ΔMCA có
góc MBN=góc MCA
góc BMN=góc CMA
=>ΔMBN đồng dạng với ΔMCA
b: AB/AC=MB/MC=MN/MA
tao là thằn lớp 5 .thế mà tao cũng giải đc đấy . bài này là tao sản xuất có đáp án là .........
a, Xét tam giác BAC và tam giác BEA ta có
^B _ chung
^BAC = ^BEA = 900
Vậy tam giác BAC ~ tam giác BEA (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=25cm\)
Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC;S_{ABC}=\dfrac{1}{2}.AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12cm\)