K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
3 tháng 5 2019

1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E 

F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .

2). Giả sử G là giao điểm của BE  CF.

Ta có  G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B   , và  F B ∥ A D  ta có  G ∈ A D .

3). Chứng minh  B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.

14 tháng 12 2022

Xét ΔOAD có OE/OA=OF/OD

nên EF//AD và EF=AD/2=BC/2

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ

=>ΔODC đều

mà CF là trung tuyến

nên CF vuông góc với BD

ΔBFC vuông tại F 

mà FG là trung tuyến

nên FG=BC/2

Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ

nên ΔOAB đều

mà BE là trung tuyến

nên BE vuông góc với CE

ΔBEC vuông tại E

mà EG là trung tuyến

nên EG=BC/2

=>EG=EF=FG

=>ΔEFG đều

14 tháng 12 2022

Xét ΔOAD có OE/OA=OF/OD

nên EF//AD và EF=AD/2=BC/2

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ

=>ΔODC đều

mà CF là trung tuyến

nên CF vuông góc với BD

ΔBFC vuông tại F 

mà FG là trung tuyến

nên FG=BC/2

Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ

nên ΔOAB đều

mà BE là trung tuyến

nên BE vuông góc với CE

ΔBEC vuông tại E

mà EG là trung tuyến

nên EG=BC/2

=>EG=EF=FG

=>ΔEFG đều