K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2022

Đặt \(f\left(x\right)=\left(m^2+m+4\right)x^{2017}-2x+1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

\(f\left(0\right)=1>0\)

\(m^2+m+4=\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

\(\Rightarrow\lim\limits_{x\rightarrow-\infty}\left[\left(m^2+m+4\right)x^{2017}-2x+1\right]=\lim\limits_{x\rightarrow-\infty}x^{2017}\left[\left(m^2+m+4\right)-\dfrac{2}{x^{2016}}+\dfrac{1}{x^{2017}}\right]=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại 1 số âm \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\Rightarrow f\left(a\right).f\left(0\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(a;0\right)\)

Hay pt đã cho luôn có ít nhất 1 nghiệm âm với mọi m

NV
6 tháng 3 2023

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)

Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R

Ta có \(f\left(0\right)=-1\)

\(f\left(-1\right)=m^2+1\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\) 

 \(\Rightarrow f\left(a\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy \(f\left(x\right)\) luôn có ít nhất 3 nghiệm thực

15 tháng 3 2017

Xét hàm số  f ( x )   =   m x   −   1 3 . ( x 2   −   4 )   +   x 4   –   3    trên các đoạn [−2; 1], [1; 2]

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=5x^3+\left(2m-1\right)x^2+m+6\)

Hàm số liên tục trên R

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(5x^3+\left(2m-1\right)x^2+m+6\right)\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại 1 số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left(x^3+\left(2m-1\right)x^2+m+6\right)=\lim\limits_{x\rightarrow+\infty}x^3\left(5+\dfrac{2m-1}{x}+\dfrac{m+6}{x^3}\right)=+\infty.5=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại 1 số thực \(b>0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (a;b) với mọi m

NV
18 tháng 3 2021

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\Rightarrow f\left(x\right)\) liên tục trên R

Ta có: \(f\left(0\right)=-1< 0\) 

\(f\left(-1\right)=m^2+1>0\) ; \(\forall m\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\) ;\(\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\) (đpcm)

26 tháng 2 2022

nếu bài này mà chứng minh có 3 nghiệm thì mình phải làm như thế nào ạ..?

14 tháng 12 2017

Phương trình ax + b = 0 có nghiệm duy nhất khi a ≠ 0  .

Xét phương trình  m 2 + 1 x + 2 = 0  có hệ số a= m2 + 1> 0  với mọi m.

Do đó, phương trình này luôn có nghiệm duy nhất với mọi giá trị của m.

NV
9 tháng 3 2022

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\)

Hàm \(f\left(x\right)\) liên tục trên R

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=+\infty.1=+\infty\)

\(\Rightarrow\) Luôn tồn tại \(a>0\) sao cho \(f\left(a\right)>0\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

\(f\left(-1\right)=m^2+1>0;\forall m\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)

\(\lim\limits_{x\rightarrow-\infty}\left(x^5+x^2-\left(m^2+2\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(1+\dfrac{1}{x^3}-\dfrac{m^2+2}{x^4}-\dfrac{1}{x^5}\right)=-\infty.1=-\infty\)

\(\Rightarrow\) Luôn tồn tại \(b< 0\) sao cho \(f\left(b\right)< 0\Rightarrow f\left(b\right).f\left(-1\right)< 0\Rightarrow\) pt luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-1\right)\)

Vậy pt đã cho luôn có ít nhất 3 nghiệm thực

10 tháng 3 2022

có dấu hiệu nào để mình biết xét từ khoảng nào kh ạ?