Cho x+y=1,xy khác 0. CMR: x/(y3-1)-y/(x3-1)+2(x+y)/(x2+y2)=0.Giải giúp mik nha, mik đang cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x<y
<=> x.x<x.y
<=> x\(^2\)<xy
x<y
<=> x.y<y.y
<=>xy<y\(^2\)
b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)
<=> x\(^2\)<y\(^2\)
x\(^2\)<y\(^2\)
=> x\(^2\).y<y\(^2\).y
<=> x\(^2\)y<y\(^3\)(1)
x\(^2\)<y\(^2\)
=> x\(^2\).x<y\(^2\).x
<=> x\(^3\)<xy\(^2\)(2)
x<y
<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)
Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)
1)
Ta có: x+y=2
nên \(\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy=2\)
hay xy=1
Ta có: \(x^3+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=2^3-3\cdot1\cdot2\)
=2
2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)
\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910