tính A= \(\sqrt{3+2\sqrt{2}}\) - \(\dfrac{1}{1+\sqrt{2}}\)( tính ko sử dụng máy tính)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(D=\dfrac{1}{2}\sqrt{48}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}.4\sqrt{3}-\sqrt{3}+5.\dfrac{2\sqrt{3}}{3}=2\sqrt{3}-\sqrt{3}+\dfrac{10\sqrt{3}}{3}=\dfrac{3\sqrt{3}+10\sqrt{3}}{3}=\dfrac{13\sqrt{3}}{3}\)
\(E=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}}=\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}=-\sqrt{5}\)
\(F=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}=\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}+\sqrt{\left(\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}\right)^2}-\sqrt{2}=\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}+\dfrac{3}{\sqrt{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
Bài 2:
Ta có: G-1
\(=\dfrac{\sqrt{x}-x+\sqrt{x}-1}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(x-2\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+1}\le0\forall x\) thỏa mãn ĐKXĐ
hay \(G\le1\)
a: \(\cos\alpha=\dfrac{1}{2}\)
\(\tan\alpha=\sqrt{3}\)
\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)
Câu 1:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\left(x\ge0;x\ne9\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
Câu 2:
\(V\left(3\right)=12000000-1400000.3=7800000\)
Có: \(V\left(t\right)=6400000\) \(\Leftrightarrow12000000-1400000t=6400000\)
\(\Leftrightarrow t=4\) => Sau 4 năm thì gtri chiếc máy tính này còn 6400000 đ
b,\(\left\{{}\begin{matrix}2x+y=5\\mx+3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{4-mx}{3}=5\\y=\dfrac{4-mx}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(6-m\right)=11\left(1\right)\\y=\dfrac{4-mx}{3}\end{matrix}\right.\)
Xét \(m=6\) thay vào pt ta đc \(\left\{{}\begin{matrix}2x+y=5\\6x+3y=4\end{matrix}\right.\) (vô nghiệm)
\(\Rightarrow m\ne6\)
Từ (1) \(\Rightarrow x=\dfrac{11}{6-m}\)
\(\Rightarrow y=\dfrac{4-\dfrac{11m}{6-m}}{3}\)\(=\dfrac{24-15m}{3\left(6-m\right)}\)
\(xy>0\Leftrightarrow\dfrac{11}{6-m}.\dfrac{24-15m}{3\left(6-m\right)}>0\)
\(\Leftrightarrow\dfrac{11\left(24-15m\right)}{3\left(6-m\right)^2}>0\)
\(\Leftrightarrow24-15m>0\Leftrightarrow m< \dfrac{24}{15}\)
`A=(2sqrtx)/(sqrtx-3)-(x+9sqrtx)/(x-9)`
`đk:x>=0,x ne 9`
`A=(2x+6sqrtx)/(x-9)-(x+9sqrtx)/(x-9)`
`=(x-3sqrtx)/(x-9)`
`=sqrtx/(sqrtx+3)`
\(A=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}:2\sqrt{2}=\frac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}.\left(\sqrt{3}-1\right)}.\frac{1}{2\sqrt{2}}\)
\(=\frac{1}{2.2}=\frac{1}{4}\)
Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn
\(P=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
\(Q=\dfrac{1}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{2-1}=\sqrt{2}+1\)
Do \(2< \sqrt{2}+1\)
=> P < Q
\(A=\sqrt{2}+1-\sqrt{2}+1=2\)