ngày THI ĐẤU OLM tối nay, ngày 28/04/2023 để so tài với học sinh toàn quốc!!!
Ôn tập kiểm tra học kì 2 hiệu quả, đạt thành tích cao!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
-0,7(4343-1717) là 1 số nguyên
\(43^{43}=43^{40}.43^3=\left(43^4\right)^{10}.\left(...7\right)=\left(...1\right)^{10}.\left(...7\right)=...7\) nên \(43^{43}\) có tận cùng là 7.
\(17^{17}=17^{16}.17=\left(43^4\right)^4.\left(...7\right)=\left(...1\right)^{10}.\left(...7\right)=...7\)nên \(17^{17}\) có tận cùng là 7.
Do đó \(43^{43}-17^{17}\) chia hết cho 10 (có tận cùng là 0) đặt \(43^{43}-17^{17}=10k\) với \(k\in Z\)
Ta có \(-0,7\left(43^{43}-17^{17}\right)=-0,7.10k=-7k\) là 1 số nguyên.
Chứng minh rằng 4343 – 1717 chia hết cho 10
giúp mik vs
Chứng minh rằng :-0,7.(43^43-17^17) là 1 số nguyên
cm (43^43-17^17) tận cùng là 0
=> .... cả phép tính nguyên
minh moi hoc lop 6 thoi ban oi
chứng minh rằng số : -0,7(43^43-17^17) là 1 số nguyên.
Chứng minh rằng -0,7(43^43-17^17)là một số nguyên
Chứng minh rằng -0,7(43^43-17^17) là một số nguyên
43^43 có chữ số tận cùng là 7
17^17 có chữ số tận cùng là 7
suy ra 43^43-17^17 có chữ số tận cùng là 0
suy ra -0,7(43^43-17^17) là số nguyên
2)Chứng minh :
a)10n+53 Chia hết cho 9
b)4343-1717 chia hết cho 10
c)555…5 Chia hết cho 11 nhưng không chia hết cho 125 (có 2n chứ số 5)
Chứng minh rằng số -0,7(4343-1717) là một số nguyên.
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
\(43^{43}=43^{40}.43^3=\left(43^4\right)^{10}.\left(...7\right)=\left(...1\right)^{10}.\left(...7\right)=...7\) nên \(43^{43}\) có tận cùng là 7.
\(17^{17}=17^{16}.17=\left(43^4\right)^4.\left(...7\right)=\left(...1\right)^{10}.\left(...7\right)=...7\)nên \(17^{17}\) có tận cùng là 7.
Do đó \(43^{43}-17^{17}\) chia hết cho 10 (có tận cùng là 0) đặt \(43^{43}-17^{17}=10k\) với \(k\in Z\)
Ta có \(-0,7\left(43^{43}-17^{17}\right)=-0,7.10k=-7k\) là 1 số nguyên.