CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
n2.(n + 1) + 2n.(n + 1)
= (n + 1).(n2 + 2n)
= (n + 1).n.(n + 2)
= n.(n + 1).(n + 2)
Vì n.(n + 1).(n + 2) là tích 3 số tự nhiên liên tiếp => n.(n + 1).(n + 2) chia hết cho 2 và 3
Mà (2,3)=1 => n.(n + 1).(n + 2) chia hết cho 6
=> n2.(n + 1) + 2n.(n + 1) chia hết cho 6
(2n - 1)3 - (2n - 1)
= (2n - 1).[(2n - 1)2 - 1]
= (2n - 1).(2n - 1 - 1).(2n - 1 + 1)
= (2n - 1).(2n - 2).2n
Vì 2n.(2n - 2) là tích 2 số chẵn liên tiếp => 2n.(2n - 2) chia hết cho 8
=> (2n - 1).(2n - 2).2n chia hết cho 8
=> (2n - 1)3 - (2n - 1) chia hết cho 8
Ủng hộ mk nha ♡_♡ ☆_☆
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24