K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

\(n^3+n^2+2n^2+2n\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.

15 tháng 6 2016

c) \(n^2+14n+49-n^2+10n-25\)

\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a)

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b)

= 2(12n +5) chia hết cho 2

5 tháng 7 2016

xem lại câu a nhé bạn

7 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên

24 tháng 6 2016

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

18 tháng 5 2017

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

20 tháng 8 2017

n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n

30 tháng 6 2016

n2.(n + 1) + 2n.(n + 1)

= (n + 1).(n2 + 2n)

= (n + 1).n.(n + 2)

= n.(n + 1).(n + 2)

Vì n.(n + 1).(n + 2) là tích 3 số tự nhiên liên tiếp => n.(n + 1).(n + 2) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n + 1).(n + 2) chia hết cho 6

=> n2.(n + 1) + 2n.(n + 1) chia hết cho 6

(2n - 1)3 - (2n - 1)

= (2n - 1).[(2n - 1)2 - 1]

= (2n - 1).(2n - 1 - 1).(2n - 1 + 1)

= (2n - 1).(2n - 2).2n

Vì 2n.(2n - 2) là tích 2 số chẵn liên tiếp => 2n.(2n - 2) chia hết cho 8

=> (2n - 1).(2n - 2).2n chia hết cho 8

=> (2n - 1)3 - (2n - 1) chia hết cho 8

Ủng hộ mk nha ♡_♡ ☆_☆

30 tháng 9 2018

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)