Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi M là giao điểm của BC và DE. Từ D kẻ đường thẳng song song với AE cắt BC tại F.
a) Chứng minh tam giác BDF cân.
b) C/m DM = ME.
c) C/m DC = FE.
Bài này ta chủ yếu chứng minh các tam giác bằng nhau.
a. Xét tam giác BDF cân do có : góc DBF = ACB(Tam giác ABC cân) = DFB (Đồng vị)
b. Xét tam giác FMD và tam giác CME có:
Góc FDM =góc MEC(so le trong)
góc DFM = góc MCE (So le trong)
DF = CE(=DB)
\(\Rightarrow\Delta FMD=\Delta CME\left(g-c-g\right)\Rightarrow MD=ME\) (Hai cạnh tương ứng)
c. Ta có \(\Delta DCM=\Delta EFM\left(c-g-c\right)\Rightarrow DC=EF\)