Cho tam giác ABC cân tại A và BAC là góc nhọn. Vẽ trung tuyến AM (M thuộc BC) . Từ M kẻ MH vuông góc AB (H thuộc AB) và MK vuông góc AC (K thuộc AC)
a, Chứng minh: MH = MK
b, Chứng minh: AM là trung trực của HK
c, Gọi I là giao điểm của AC và MH. Xác định trực tâm của tam giác AMI
d, Từ B kẻ Bx vuông góc BA và Cy vuông góc CA . Bx cắt Cy tại D.
e, Chứng minh: A, M, D thẳng hàng e, Tính độ dài của đoạn thẳng IM khi AK = 2cm và BAC= 60 độ
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường cao vừa là đường phân giác
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
b: Ta có: ΔAHK cân tại A
mà AM là đường phân giác
nên AM là đường trung trực của HK