Đặt 1 vật AB vuông góc với chục chính của 1 thấu kính hội tụ biết vật cao 2cm. Vẽ ảnh và nêu đặc điểm của ảnh, tính chiều cao của ảnh và khoảng cách từ ảnh tới thấu kính trong trường hợp:
a. Thấu kính có tiêu cự là 8cm, vật đặt cách thấu kính là 12cm.
b. Thấu kính có tiêu cự là 8cm, vật đặt cách thấu kính là 6cm.
Đặc điểm:
- Ảnh thật
- Ảnh lớn hơn vật và ngược chiều với vật
Tóm tắt:
AB = h = 2cm
OF = OF' = f = 8cm
AO = d = 12cm
A'B' = h = ?
A'O = d' = ?
Giải:
\(\Delta ABF\sim\Delta OIF\)\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{AO-OF}{OF}\Leftrightarrow\dfrac{2}{A'B'}=\dfrac{12-8}{8}\)
\(A'B'=\dfrac{2.8}{12-8}=4cm\)
\(\Delta ABO\sim\Delta A'B'O\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{AO}{A'O}\Leftrightarrow\dfrac{2}{4}=\dfrac{12}{A'O}\Rightarrow A'O=\dfrac{12.4}{2}=24cm\)
Đặc điểm:
- Ảnh ảo
- Ảnh lớn hơn vật và cùng chiều với vật
Tóm tắt:
AB = h = 2cm
OF = OF' = f = 8cm
AO = d = 6cm
A'B' = ?
A'O = ?
Giải:
\(\Delta OFI\sim\Delta AFB\)
\(\Rightarrow\dfrac{OF}{AF}=\dfrac{OI}{AB}\Leftrightarrow\dfrac{OF}{OF-OA}=\dfrac{A'B'}{AB}\Leftrightarrow\dfrac{8}{8-6}=\dfrac{A'B'}{2}\)
\(\Rightarrow A'B'=\dfrac{8.2}{8-6}=8cm\)
\(\Delta A'B'O\sim\Delta ABO\)
\(\Rightarrow\dfrac{A'B'}{AB}=\dfrac{A'O}{AO}\Leftrightarrow\dfrac{8}{2}=\dfrac{A'O}{6}\Rightarrow A'O=\dfrac{8.6}{2}=24cm\)