K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

22 tháng 6 2021

undefined

20 tháng 5 2022

loading...  nhớ đánh giá tốt giúp mk ạ

25 tháng 12 2019

Ta có: S A B C  = 1/2.AB.AC = 1/2.21.28 = 294 ( c m 2 )

Vì △ ABC và  △ ADB có chung đường cao kẻ từ đỉnh A nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy S A D C = S A B C - S A B D  = 294 – 126 = 168( c m 2 )

Bổ sung đề: AC=28cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{21}=\dfrac{DC}{28}\)

mà DB+DC=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{21}=\dfrac{DC}{28}=\dfrac{DB+DC}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có 

D∈BC(gt)

E∈AC(gt)

DE//AB(gt)

Do đó: \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)(Hệ quả Định lí Ta lét)

\(\Leftrightarrow\dfrac{DE}{21}=\dfrac{20}{35}\)

hay \(DE=\dfrac{21\cdot20}{35}=\dfrac{420}{35}=12\left(cm\right)\)

Vậy: CD=15cm; BD=20cm; DE=12cm