Rất vui được biết các bạn mình học lớp 8. Rất vui được kết bạn. Mong các bạn giúp đỡ.
Cho tứ giác ABCD. Chứng minh rằng: AB+CD<AC+BD<AB+BC+CD+AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kiến thức lớp 8 chưa hok nên ko hỉu!!
5654646457568
Câu hỏi gì kì vậy chắc là lời giới thiệu về bản thân chứ gì
Xét tam giác ABD có MN là đường trung bình => MN//=AD/2
Xét tam giác ACD có PQ là đường trung bình => PQ//=AD/2
=> MN//=PQ => Tứ giác MNPQ Là hình bình hành (1)
Tương tự ta cũng chứng minh được NP//=MQ//=BC/2
Ta có ^DAB+^AMN=180 (Hai góc trong cùng phía)
Ta có ^CBA+^BMQ=180 (lý do như trên)
=> (^DAB+^CBA)+(^AMN+^BMQ)=360 => ^AMN+^BMQ=360-^DAB+^CBA=360-270=90
Ta có ^AMB=^AMN+^BMQ+^NMQ=180=> ^NMQ=180-^AMN+^BMQ=180-90=90 (2)
Từ (1) và (2) => MNPQ là hình chữ nhật
Áp dụng bất đẳng thức về cạnh :
Cộng (1) và (2) theo vế được : \(AB+CD< OA+OB+OC+OD=AC+BD\)
\(\Rightarrow AB+CD< AC+BD\left(\text{*}\right)\)
Tương tự, ta áp dụng bất đẳng thức về cạnh trong các tam giác ABC , ACD , ABD , BDC được :
Cộng (3) , (4) , (5) , (6) theo vế được :
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Rightarrow AC+BD< AB+BC+CD+AD\left(\text{*}\text{*}\right)\)
Từ (*) và (**) ta được điều phải chứng minh.