K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

\(P=\left(a+1\right)\left(a^2+1\right)\left(a^4+1\right)...\left(a^{32}+1\right)\left(a^{64}+1\right)\)

\(\Leftrightarrow10P=\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{64}+1\right)\)

\(\Leftrightarrow10P=\left(a^2-1\right)\left(a^2+1\right)\left(a^4+1\right)...\left(a^{64}+1\right)\)

\(\Leftrightarrow10P=\left(a^4-1\right)\left(a^4+1\right)...\left(a^{64}+1\right)\)

Tiếp tục rút gọn, ta được : \(10P=a^{128}-1\Leftrightarrow P=\frac{a^{128}-1}{10}=\frac{11^{128}-1}{10}\)

5 tháng 11 2017

a, \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}=2^{64}-1-2^{64}=-1\)

b,\(B=\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

\(=\dfrac{\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)}{2}+\dfrac{5^{128}-3^{128}}{2}\)\(=\dfrac{\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}\)

\(=\dfrac{\left(5^{64}-3^{64}\right)\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}=\dfrac{2.5^{128}}{2}=5^{128}\)

14 tháng 7 2016

a) (2+1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2+1)(2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2^2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2^4-1)(2^4+1)....(2^32+1)-2^64

=......

=(2^32-1)(2^32+1)-2^64

=2^64-1-2^64=-1

b)Đặt A=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)+(5^128-3^128)/2

đặt B=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)

\(2B=\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=\left(5^4-3^4\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=.......\)

2B=(5^64-3^64)(5^64+3^64)

2B=5^128-3^128

B=(5^128-3^128)/2 (thế vào đề bài)

=> A=B+(5^128-3^128)/2=(5^128-3^128)/2+(5^128-3^128)/2=\(\frac{2\left(5^{128}-3^{128}\right)}{2}=\left(5^{128}-3^{128}\right)\)

14 tháng 7 2016

a) A = ( 2-1)(2+1)(22+1)...(232+1)-264

         =(22-1)(22+1)(24+1)... -264

       =....

       =264-1-264=1

câu b tương tự nhá

3 tháng 8 2019

Từ đầu bài 

=> 1.\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\) \(+...+\left(a^{32}+b^{32}\right)\)\(a^{64}-b^{64}\)

=> \(\left(a-b\right)\left(a+b\right)+...+\left(a^{32}+b^{32}\right)\)\(a^{64}+b^{64}\)

=> \(\left(a^2-b^2\right)\left(a^2+b^2\right)+...+\left(a^{32}+b^{32}\right)\)= a^64 + b^64

tương tự sẽ ra kết quả cuối là \(\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\left(đpcm\right)\)

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Sao tự nhiên lại lòi ra số c vậy?

30 tháng 8 2017

mình ko biết đề bài nó như z

26 tháng 6 2016

ta có \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) => \(\frac{a^2-b^2}{a-b}=a+b\)

        \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)\)=> \(\frac{a^4-b^4}{a^2-b^2}=a^2+b^2\) 

        \(a^8-b^8=\left(a^4-b^4\right)\left(a^4+b^4\right)\) => \(\frac{a^8-b^8}{a^4-b^4}=a^4+b^4\)

        ...............................................................................................

        \(a^{64}-b^{64}=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\) => \(\frac{a^{64}-b^{64}}{a^{32}-b^{32}}=a^{32}+b^{32}\)

thay vào ta được 

\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)......\left(a^{32}+b^{32}\right)\)

\(=\frac{a^2-b^2}{a-b}.\frac{a^4-b^4}{a^2-b^2}.\frac{a^8-b^8}{a^4-b^4}.............\frac{a ^{64}-b^{64}}{a^{32}-b^{32}}\)

\(=\frac{a^{64}-b^{64}}{a-b}\)

mà a-b= 1 nên \(\frac{a^{64}-b^{64}}{a-b}=a^{64}-b^{64}\)

       

19 tháng 6 2019

\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

19 tháng 6 2019

a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)

Rút gọn:  \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)

\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)

b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.

13 tháng 10 2018

\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(A=1.199+1.195+...+3.1\)

\(A=3+7+...+195+199\)

Tổng A có: \(\frac{199-3}{4}+1=50\)( số hạng)

\(\Rightarrow A=\frac{\left(199+3\right).50}{2}=5050\)

Mấy ý kia chốc về lm nốt 

13 tháng 10 2018

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)

\(B=2^{64}-1+1\)

\(B=2^{64}\)