K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

Gọi: \(A=n^2+4\)và \(B=n^2+16\)

Ta có: \(A=n^2+4=n^2-1+5=\left(n-1\right)\left(n+1\right)+5\)(1)

và \(B=n^2+16=n^2-4+20=\left(n-2\right)\left(n+2\right)+20\)(2)

Vì A;B là số nguyên tố nên từ (1) và (2) suy ra: \(\left(n-1\right)\left(n+1\right)\)và \(\left(n-2\right)\left(n+2\right)\)không chia hết cho 5. 

Mặt khác, tích của 5 số tự nhiên liên tiếp: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)phải chia hết cho 5. 

Suy ra n chia hết cho 5. ĐPCM.

21 tháng 11 2017

Theo đề bài: p là số nguyên tố lớn hơn 3

=> p là số lẻ

=> p = 2k + 1 ( \(k\in z;k>1\))

=> A = (p - 1)( p +1 ) = 2k(2k+2) = 4k(k+1)

=> A chia hết cho 8  (1)

Ta lại có: p = 3n + 1 hoặc 3n - 1 (\(n\in Z,N>1\))

=> A chia hết cho 3   (2)

Từ (1) và (2) => A chia hết cho 24

21 tháng 11 2017

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

2 tháng 2 2016

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

28 tháng 7 2021

Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

Mà   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố.

 

18 tháng 7 2018

nhớ có lời giải nha.  THANKS BẠN NHIỀU

2 tháng 1 2016

  vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 2 
=>p^2-1 chia hết cho 2 (2) 
từ (1) và (2) => p^2-1 chia hết chia hết cho với mọi số nguyên tố p>3