Cho a và b là hai số dương thỏa mãn ab=1. Tìm giá trị nhỏ nhất của biểu thức :
\(F=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{a}=x>0;\frac{1}{b}=y>0;\frac{1}{c}=z>0\)
Từ giả thiết ta có: \(7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\le6\left(x^2+y^2+z^2\right)+2015\)
\(\Leftrightarrow x^2+y^2+z^2\le2015\)
Ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}=\frac{1}{\sqrt{\left(4a^2+b^2\right)+\left(2a^2+2b^2\right)}}\le\frac{1}{\sqrt{4a^2+b^2+4ab}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(2x+y\right)\)
Tương tự thì: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(2y+z\right)\) và \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(2z+x\right)\)
Cộng từng vế 3 BĐT trên ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\le\sqrt{\frac{2015}{3}}\)
Vậy max \(P=\sqrt{\frac{2015}{3}}\) , đạt được khi \(a=b=c=\sqrt{\frac{3}{2015}}\)
Biến đổi giả thiết \(2\left(a^2+b^2\right)-\left(a+b\right)=2ab\)
Mà ta có: \(2ab\le\frac{\left(a+b\right)^2}{2}\)nên \(2\left(a^2+b^2\right)-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)(*)
Theo BĐT Cauchy-Schwarz: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)nên từ (*) suy ra \(\left(a+b\right)^2-\left(a+b\right)\le\frac{\left(a+b\right)^2}{2}\)
Đặt \(s=a+b>0\)thì \(s^2-s\le\frac{s^2}{2}\Leftrightarrow\frac{s^2}{2}-s\le0\Leftrightarrow s^2-2s\le0\Leftrightarrow s\left(s-2\right)\le0\)
Mà \(s>0\)nên \(s-2\le0\Rightarrow s\le2\)hay \(a+b\le2\)
\(F=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{a^4}{ab}+\frac{b^4}{ab}+2020.\frac{4}{a+b}\)\(\ge\frac{\left(a^2+b^2\right)^2}{2ab}+\frac{8080}{a+b}\ge\left(\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}\right)+\frac{8072}{a+b}\)
\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{2}.\frac{4}{a+b}.\frac{4}{a+b}}+\frac{8072}{2}=4042\)
Đẳng thức xảy ra khi a = b = 1
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
\(P\ge\dfrac{\left(2a+1+2b+1\right)\left(2a+1+2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}\ge\dfrac{4\left(2a+1\right)\left(2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}=4\)
Vậy \(P_{max}=4\), với a=b=1
Có \(2a+2b-3\ge2\sqrt{2a.2b}-1=1\)(vì ab=1)
\(\Rightarrow F\ge a^3+b^3+\frac{7}{\left(a+b\right)^2}\)
bạn giải giúp mình luôn phần sau di :((