Tìm số tự nhiên nhỏ nhất khi chia 6 dư 5,chia 5 dư 4, chia 4 dư 3, chia 3 dư 2 , chia 2 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là a
Vì a chia 2 dư 1; chia 3 dư 2; chia 4 dư 3; chia 5 dư 4; chia 6 dư 5; chia 7 dư 6 nên (a + 1) \(⋮\)2; 3; 4; 5; 6; 7
Số bé nhất chia hết cho các số từ 2 đến 7 là 420
số cần tìm là : 420 - 1 = 419
Đáp số : 419
gọi số đó là a.
a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 =>(a-2) chia hết cho 3,4,5,6
=>(a-2) thuộc BC(3,4,5,6)
3=3 , 4=2^2 , 5=5 , 6=2x3
BC(3,4,5,6) = 2^2x3x5= 60
(a-2) thuộc B(60)={0;60;120;180;240;...}
=> a thuộc {2;62;182;242;...}
vì a chia hết 11 và nhỏ nhất => a=242
đúng ko
Gọi số cần tìm là a
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35
=> a = 26
Vậy số phải tìm là 26
N
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Nếu mình đúng thì các bạn k mình nhé
chac la 59
dung thi ban k ko dung ban cu k cho minh vui nha!
gọi số cần tìm là a
vì a : 3 dư 1, a : 4 dư 2, a : 5 dư 3 và a : 6 dư 4 (đều thiếu 2) => a + 2 \(⋮\)3,4,5,6 => a + 2 \(\in\)BC(3,4,5,6)
vì a là số tự nhiên nhỏ nhất nên a = BCNN(3,4,5,6)
3 = 3
4 = 22
5 = 5
6 = 2 . 3
a + 2 = BCNN(3,4,5,6) = 22 . 3 . 5 = 60
=> a = 60 - 2 = 58
vậy số cần tìm là 58
ta biết số đó chia cho số nào cũng thiếu 1
số chia hết cho 4 thì chia hết cho 2 , số chia hết cho 6 thì chia hết cho 3 vậy
4 x 5 x 6 x7 = 840 vì thiếu 1 nên 840 - 1= 839
k mình nhaa^ ^
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Số tự nhiên cần tìm là X
Ta thấy nếu X+1 sẽ chia hết cho 6;5;4;3;2.
X nhỏ nhất khi X+1 nhỏ nhất. Hay X+1 là BCNN (6;5;4;3;2) = 60
X+1 = 60 => X = 59.
số đó là 59