K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

9 tháng 6 2016

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

Bài 1:

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

30 tháng 8 2018

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-\left(n^2-3n+2n-6\right)\)

\(=n^2+5n-n^2+3n-2n+6\)

\(=\left(n^2-n^2\right)+\left(5n+3n-2n\right)+6\)

\(=6n+6\)

\(=6\left(n+1\right)⋮6\forall n\in Z\left(đpcm\right)\)

30 tháng 8 2018

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-\left(n^2+2n-3n-6\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6=6\left(n+1\right)\)

Ta thấy \(6\left(n+1\right)⋮6\forall n\in Z\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)⋮6\forall n\in Z\)

22 tháng 4 2019

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

NV
22 tháng 4 2019

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

16 tháng 7 2015

TH1: n chia hết cho 3

=> n2 + n chia hết cho 3 

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

TH2: n chia 2 dư 1

=> n2 chia 3 dư 1

=> n2 + n chia 3 dư 2

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 1

TH3: n chia 3 dư 2

=> n2 chia 3 dư 1

=> n2 + n chia hết cho 3

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)

16 tháng 7 2015

Hồ Thu Giang ơi ! Bạn xem kĩ bài đi, sai 1 số chỗ đấy ! 

23 tháng 12 2018

\(A=\left(x+4\right)\left(x-4\right)-2x\left(x+3\right)+\left(x+3\right)^2\)

\(A=\left(x^2-16\right)-\left(2x^2+6x\right)+\left(x^2+6x+9\right)\)

\(A=x^2-16-2x^2-6x+x^2+6x+9\)

\(A=-7\)

Vậy A không phụ thuộc vào giá trị của biến x

17 tháng 3 2019

\(\frac{1}{3}x^3\) nha mik vt nhầm