Cho tam giác $ABC$ vuông tại $A$, nội tiếp trong đường tròn tâm $I$; bán kính $r$. Gọi $P$ là trung điểm của $AC$; $AH$ là đường cao của tam giác $ABC$.
a) Chứng minh tứ giác $APHI$ nội tiếp được trong đường tròn. Xác định tâm $K$ của đường tròn này.
b) Chứng minh hai đường tròn $(I)$ và $(K)$ tiếp xúc nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)
Gọi các tiếp điểm với AB và AC là E và F
Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:
\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)
Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)
\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)
\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)
Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)
\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)
\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)
a)\(\Delta AEC\)có góc ngoài là AEB=góc KAC+ góc ACE
Mà góc BAE = góc KAH; góc ACB = góc BAH => góc AEB = góc BAE
\(\Rightarrow\Delta ABE\)cân ở B và có BJ là phân giác
=>BJ vuông góc với AE
Tương tự có CJ vuông góc AD => AI vuông góc JK (I là trực tâm \(\Delta AJK\))
b)Dùng tính chất các phân giác ta có: góc BAI= góc \(\frac{BAC}{2}=\)\(\frac{\text{(góc B+góc C)}}{2}\)
=>Góc EAI=\(\frac{\text{(góc B+góc C)}}{2}\text{-góc EAI}\)\(\frac{\text{(góc B+góc C)}}{2}\text{- góc C}=\frac{\text{góc B}}{2}\)
Nhưng ta lại có góc EAI=JAI=EKJ (Cùng phụ góc AJK)
=>Góc EKJ= góc JBC(= góc B/2)
Lại có góc EKJ+góc JKC=180 độ (kề bù)
=>góc JBC+góc JKC=180 độ nên tứ giác BJKC nội típ
oke bạn