Cho tứ giác ABCD, các tia phân giác của góc A và góc D cắt nhau tại I. Chứng minh: ^AIB=^C+^D/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AI là pg BAD
=> BAI = IAD
Vì BI là pg ABC
=> ABI = IBC
Xét tam giác AIB ta có
AIB = 180 - (BAI + ABI)
=> AIB = 180 -( 1/2BAI +1/2ABI)
Mà BAI + ABI = 360 - (ABC+ BCD)
=> AIB = 180- [360-(1/2ABC+1/2BCD)]
=> AIB = ABC + BCD /2
Ta có: gốc IAB = 1/2 gốc A
gốc IBA = 1/2 gốc B
=> Gốc IAB + gốc IBA = 1/2 gốc A + 1/2 gốc B = 1/2 (gốc A + gốc B)
mà ( gốc A + gốc B ) = 360 - ( gốc D + gốc C ) = 360 - ( 70 + 110 ) = 180
=> gốc IAB + gốc IBA = 1/2 ( gốc A + gốc B) = 180 / 2 = 90
Có góc AIB = 180 - ( góc IAB + gốc IBA ) = 180 - 90 = 90
vậy gốc AIB = 90
ok bạn !