Hai số tự nhiên a và b : cho m có cùng số dư, a > hoặc = b.
Chứng tỏ rằng a - b chia hết cho m.
bạn nào bt chỉ mìk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, b chia m có cùng số dư
=> a = km + x ( k, x thuộc Z )
=> b = qm + x ( q thuộc Z và k >= b ( để a >= b )
=> a - b = km + x - qm - x
=> a - b = m ( k - q )
=> a - b chia hết cho m ( đpcm )
vì a và b chia cho m co cung so du nen ta đặt : a = m.k+r
b = m.q+r
Ta có : a-b=(m.k+r)-(m.q+r)
=m.k+r+m.q-r
=(m.k+m.q)+(r-r)
=m.k+m.q
=m.(k+q) là số chia hết cho m
hay a-b chia hết cho m
Vậy....
Gọi a=m.k+r ; b=m.h+r (k và h là thương của a và b cho m;n là số dư,r\(\ge0\)
=>a-b=(m.k+r)-(m.h+r)
=m.k-m.h
Vì m.k và m.h đều chia hết cho m.
=>a-b chia hết cho m(Đpcm)
Gọi a=nM+d và b=eM+d (n,e E N và n>e)
a-b=nM+d-(eM+d)=nM-eM=M(n-e) chia hết cho M (đpcm)
Gọi d là số dư của a và b
Gọi k là thương của a và M
Gọi n là thương của b và M
suy ra a-b=(k*M+d)-(n*M+d)=(k-n)*M
Mà a-b=(k-n)*M !!! Suy ra a-b chia hết cho M
Gọi a=nM+d và b=eM+d ﴾n,e E N và n>e﴿
a‐b=nM+d‐﴾eM+d﴿=nM‐eM=M﴾n‐e﴿ chia hết cho M ﴾đpcm﴿
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM
MÌNH GIÚP BẠN NÈ
Nếu a mà lớn hơn b hoặc bằng b thì a là số bị chia b là số chia
Theo dấu hiệu chia hết thì nếu a chia hết cho m , b chia hết cho m thì , [a-b] hoặc [a+b] đều chia hết cho m
Nhưng theo công thức [a-b]:m là phải có 2 số cùng chia hết cho m
Nhưng đây lại có 2 số a và b cùng không chia hết cho m nên ta cũng không thể biết chính xác là a-b có thể chia hết cho m hay không
Nên a-b có khả năng chia hết cho m mà cũng không có khả năng vì không có con số chính xác để tính được
Nên a-b có khả năng chia hết cho m
Gọi số dư của a và b khi chia cho m là n
Ta có: a = m.k+n
b = m.h+n
=> a - b = m.k+n - (m.h+n) = m.k+n - m.h-n = (m.k - m.h) + (n-n) = m.(k-h) chia hết cho m
=> a-b chia hết cho m (đpcm)
giải: gọi số dư của a và b khi chia cho m là n
ta có: a = m.k+n
b = m.h+n
=> a - b = m.k+n - (m.h+n) = m.k+n - m.h-n = (m.k - m.h) + (n-n) = m.(k-h) chia hết cho m
=> a-b chia hết cho m (đccm)
mk chỉ rùi nha!! 56547568