Với a,b là các chữ số khác 0, chứng minh rằng : abab - baba chia hết cho 9 với a>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) ⋮ 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) ⋮ 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) ⋮ 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
a) Ta có: abba = a . 1000 + b . 100 + b . 10 + a
= 1001a + 101b
= a . 91 . 11 + b . 11 . 10
= 11 . (a . 91 + b . 10) 11
b) Ta có: aaabbb = a . 100000 + a . 10000 + a . 1000 + b . 100 + b . 10 + b
= a . 111000 + b . 111
= a . 37 . 3000 + b . 37 . 3
= 37 . (a . 3000 + b . 3) 37
c) Ta có: ababab = a . 100000 + b . 10000 + a . 1000 + b . 100 + a . 10 + b
= a . 101010 + b . 10101
= a . 14430 . 7 + b . 1443 . 7
= 7 . (a . 14430 + b. 1443) 7
d) Ta có: abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) 9
,a,abba=a.1000+b.100+b.10+a.1
=a.(1000+1)+b.(10+100)
=a.1001+b.110
=a.(11.91)+(11.10)\(⋮\)11
\(\Rightarrow\)abba\(⋮\)11(đpcm)
Ta có:
abab-baba=ab.101-ba.101
=(ab-ba).101
=(10+b-10b+a).101
=(10a-a+b-10b).101
=(9a-9b).101
=(a-b).9.101 chia hết cho 9 và 101
Mình chỉ cop lại câu trả lời lúc trước của mình. Bạn xuống mà xem
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
Giải:
Ta có: \(\overline{abab}-\overline{baba}=1000a+100b+10a+b-1000b-100a-10b-a\)
\(=\left(1000a+10a-100a-a\right)-\left(1000b+10b-100b-b\right)\)
\(=909a-909b\)
\(=909\left(a-b\right)\)
\(=101.9.\left(a-b\right)⋮9,101.9.\left(a-b\right)⋮101\)
\(\Rightarrow\overline{abab}-\overline{baba}⋮9\) và 101
Vậy \(\overline{abab}-\overline{baba}⋮9\) và 101
Câu a, b em xem trong mục câu hỏi tương tự nhé!
c) \(\overline{aaabbb}=\overline{aaa}.1000+\overline{bbb}=a.111.1000+b.111=\left(a.1000+b\right).111⋮37\)
vì 111=37.3 chia hết cho 37
d)
\(\overline{abab}-\overline{baba}=a.1000+b.100+a.10+b-b.1000-a.100-b.10-a=a.909-b.909\)
=909. (a-b)=9.101.(a-b) chia hết cho 9 và 101
a) abba chia hết cho 11
Ta có abba = 1000a + 100b + 10 b + a
= (1000a + a) + (100b +10b)
= 1001a + 110b
= 11.91.a + 11.10.b
= 11.(91a + 10b) \(⋮\)11
b) ababab \(⋮\)7
=> ababab = 100 000a + 10 000b + 1000a + 100b + 10a + b
= (100 000a + 1000a + 10a) + (10 000b + 100b + b)
= 101010a + 10101b
= 7.14430a + 7. 1443b
= 7.(14430a + 1443b) \(⋮\)7