K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:x+y+z=0

=>x,y,z là 3 số hạng giống nhau, 0^ bao nhiêu cũng bằng 0

Do đó, x^3+y^3+z^3=3xyz

Thật ra e ms lp 6 thui nên nghĩ sao nói vậy dù sao thì cũng có cái ý, đáp án cuối cùng là đúng, chỉ có trường hợp xảy ra là trình bày bài k chặt chẽ, nên là có lẽ người đưa ra bài toán này fai tìm cách giải chặt chẽ hơn, ok, nhưng nhớ là cũng k cho e đó

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

16 tháng 7 2016

Do \(x+y+z=0\) \(\Rightarrow x+y=-z\)

Ta có: \(\left(x^3+y^3\right)+z^3=\left(x+y\right)^3+z^3-3xy\left(x+y\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(-z\right)=3xyz\)(do \(x+y+z=0\)).

16 tháng 7 2016

ta có:

(x+y+z)3=0

x^3+y^3+z^3+3(x+y)(y+z)(z+x)=0 (1)

mà x+y+z=0 suy ra x+y= -z; y+z= -x; z+x= -y (2)

từ (1) và (2) suy ra

x^3+y^3+z^3+3(-z)(-x)(-y)=0

x^3+y^3+z^3-3xyz=0

x^3+y^3+z^3=3xyz(đpcm)

24 tháng 8 2017

 ta có: a+b+c=1 

<=>(a+b+c)^2=1 

<=>ab+bc+ca=0 (1) 

mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 

x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 

<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 

=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 

<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 

từ (1) và (2) ta có đpcm 

10 tháng 8 2016

Giải:

Ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)

+) \(\frac{x}{4}=2\Rightarrow x=8\)

+) \(\frac{y}{6}=2\Rightarrow y=12\)

+) \(\frac{z}{15}=2\Rightarrow z=30\)

Vậy x = 8

       y = 12

       z = 30

       

          

10 tháng 8 2016

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x + y + z =50

\(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}+\frac{y}{6}+\frac{z}{15}=\frac{50}{25}=2\)

=> x = 2.4 = 8

=> y = 2.6 = 12

=> z = 2.15 = 30

Vậy x = 8;y = 12;z = 30. 

1 tháng 11 2016

a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).

 

 

1 tháng 11 2016

giải giùm mình bài b luôn đi