cho tam giác ABC vuông tại A.AH là đường cao biết BH=a HC=b .CM:\(\sqrt{ab}\le\frac{a+b}{2}\)
GIẢI NHANH MK TICK CHO nè mấy bạn. bạn nào giải rồi thì cứ típ tục cho đáp án để mk tham khảo rồi tick đáp án đúng cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ODC có:
AB/CD=1/2 (gt)
OA/OC=1/2 (OA/AC=1/3)
=>AB//CD(d/l Ta-lét)
=> ABCD là hình thang
=> bạn hãy cố gắng làm tiếp nếu có thể
hãy tìm các cặp diện tích tam giác bằng nhau, chứ mik ko chắc nữa
Đề phải sửa là Vuông tại A
a/ \(BC^2=AB^2+AC^2=15^2+20^2=625=25^2\Rightarrow BC=25cm\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(HC=BC-BH=25-9=16cm\)
b/ Xét tg vuông ABH có \(\widehat{BAH}+\widehat{ABC}=90^o\) (1)
Xét tg vuông ABC có \(\widehat{ACH}+\widehat{ABC}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACH}=\widehat{BAH}\)
Sửa đề tam giác ABC vuông tại A
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H có
BH2 + AH2 = AB2
=> BH2 + 122 = 152
=> BH2 = 152 - 122
=> BH2 = 81
=> BH = 9
Áp dụng định lý Py-ta-go vào tam giác ACH vuông tại H có
AH2 + HC2 = AC2
=> 122 + HC2 = 202
=> HC2 = 202 - 122
=> HC2 = 256
=> HC = 16
Diện tích hình tam giác là :
( 3 x 4 ) : 2 = 6 ( cm\(^2\))
Chiều cao AH là :
( 6 x 2 ) : 5 = 2,4 ( cm )
Đáp số : 2,4 cm
Gọi M là trung điểm của BC. Vì tam giác ABC vuông tại A và có cạnh huyền BC nên : \(AM=\frac{BC}{2}=\frac{a+b}{2}\) (1)
Mặt khác, ta có : \(AH^2=BH.CH\Rightarrow AH=\sqrt{ab}\) (2)
Ta luôn có : \(AH\le AM\) (3)(quan hệ giữa đường xiên và hình chiếu)
Từ (1) (2) và (3)\(\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\) (đpcm)
AB C H a b M
Mình giải thế này nhé :))
Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => \(AM=\frac{1}{2}BC\)(vì tam giác ABC vuông)
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; \(AH=\sqrt{ab}\)(1)
Mặt khác, ta cũng có ; \(AH\le AM=\frac{BC}{2}=\frac{a+b}{2}\)(2)
Từ (1) và (2) suy ra được : \(\sqrt{ab}\le\frac{a+b}{2}\)(Đpcm)