Cho tam giác ABC cân tại A. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a. C/m BD = CE
b. Trên tia CE và tia BD lấy điểm M và N sao cho E là trung điểm của HD, D là trung điểm của HN. C/m AM = AH
c. C/m tam giác AMN cân
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔAMH có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAMH cân tại A
hay AM=AH(1)
c: Xét ΔANH có
AD là đường cao
AD là đường trung tuyến
Do đó: ΔANH cân tại A
hay AH=AN(2)
Từ (1) và (2) suy ra AM=AN
hay ΔAMN cân tại A