1)Tam giác ABC vuông cân tại A, đường trung tuyến AM. Gọi D là điểm thuộc đoạn thẳng MC. Gọi H là chân đường vuông góc kẻ từ B đến AD. Gọi I, K lần lượt là chân đường vuông góc kẻ từ M đến AD và BH. Chứng minh HM là tia phân giác của góc BHD.
2)Tam giác ABC có I là giao điểm các tia phân giác của các góc B và C. Gọi d là giao điểm của AI và BC. Kẻ IH vuông góc với BC( H thuộc BC). Chứng minh rằng góc BIH= góc CID.
3) Cho tam giác ABC có góc C=30 độ. Tia phân giác của góc B và đường phân giác của góc ngoài tại A cắt nhau ở E. Tính số đo góc BCE.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.