Cho các số nguyên a,b,c,d thỏa mãn các điều kiện :
a+b=c+d và ab +1=cd
Chứng tỏ rằng c=d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b).b+1=cd
<=> cb+db-cd+1-b2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d
Giải
Ta có : a + b = c + d suy ra a = c + d - b
Thay a = c + d - b vào đẳng thức ab + 1 = cd , ta được :
\(b\left(c+d-b\right)+1=cd\)
\(\Leftrightarrow cb+bd-b^2-cd=-1\)
\(\Leftrightarrow\left(cb-b^2\right)+\left(bd-cd\right)=-1\)
\(\Leftrightarrow b\left(c-b\right)+d\left(c-b\right)=-1\)
\(\Leftrightarrow\left(b+d\right)\left(c-b\right)=-1\)
\(\Rightarrow b+d=-\left(c-b\right)\)
\(\Rightarrow b+d=-c+b\)
\(\Rightarrow c=d\left(đpcm\right)\)
a) Vì (n + 2) - (n - 1) = 3 chia hết cho 3 nên n + 2 và n - 1 cùng chia hết cho 3 hoặc cùng không chia hết cho 3.
*) Nếu n + 2 và n - 1 cùng chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) chia hết cho 9.
Mà 12 không chia hết cho 9
\(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9.
*) Nếu n + 2 và n - 1 cùng không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 3 \(\Rightarrow\)(n + 2)(n - 1) + 12 không chia hết cho 9
Vậy (n - 1)(n + 2) + 12 không chia hết cho 9
b) ab + 1 = cd.(1)
a + b = c + d \(\Rightarrow\)a = c + d - b.
Thay a vào (1) ta có :
(c + d - b).b + 1 = cd
\(\Rightarrow\)cb + db - b2 + 1 = cd
\(\Rightarrow\) 1 = cd - cb - db + b2
\(\Rightarrow\) 1 = (cd - cb) - (db - b2)
\(\Rightarrow\) 1 = c(d - b) - b(d - b)
\(\Rightarrow\) 1 = (c - b)(d - b)
\(\Rightarrow\) c - b = d - b
\(\Rightarrow\)c = d (đpcm)
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Ta có :a+b=c+d
\(\Rightarrow\) a=c+d-b
Thay vào ab+1=cd
\(\Rightarrow\) (c+d-b)*b+1=cd
\(\Leftrightarrow\)cb+db-cd+1-b2=0
\(\Leftrightarrow\) b(c-b)-d(c-b)+1=0
\(\Leftrightarrow\) (b-d)(c-b)=-1
Ta lại có :a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
Mà (b-d)(c-b)=-1 nên có 2 trường hợp
TH1: b-d=-1 và c-b=1
\(\Leftrightarrow\) d=b+1 và c=b+1
\(\Rightarrow\) c=d (1)
TH2: b-d=1 và c-b=-1
\(\Leftrightarrow\) d=b-1 và c=b-1
\(\Rightarrow\) c=d (2)
Vậy từ (1) và (2) ta có c=d.